Theorem on Properties of Triangle

Proof the theorems on properties of triangle \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K

Proof:

Let O be the circum-centre and K the circum-radius of any triangle PQR.

Since in triangle PQR, three angles are acute in figure (i), then we observe that the triangle PQR is acute-angled in figure (ii), the triangle PQR is obtuse-angled (since its angle P is obtuse) and in figure (iii), the triangle PQR is right-angled (since the angle P is right angle). In figure (i) and figure (ii) we join QO and produce it to meet the circumference at S. Then join RS.

Clearly, QO = circum-radius = K  

Therefore, QS   = 2 ∙ QO = 2K and ∠QRS = 90° (being the semi-circular angle).

Now, from figure (i)we get,

∠QSR = ∠QPR = P (being the angles on the same arc QR).

Therefore, from the triangle QRS we have,

QR/QS = sin ∠QSR

⇒ p/2K = sin P 

⇒  p/sin P = 2K

Again, from figure (ii) we get,

∠QSR = π - P [Since, ∠QSR + ∠QPR = π]

Therefore, from the triangle QRS we get,

QR/QS = sin ∠QSR

⇒ p/2K = sin (π - P)

⇒ p/2K = sin P

⇒ a/sin P = 2K

Finally, for right-angled triangle, we get from figure (iii),

2K = p = p/sin 90° = p/sin P    [Since, P = 90°]

Therefore, for any triangle PQR (acute-angled, or obtuse-angled or right-angled) we have,

Similarly, if we join PO and produce it to meet the circumference at T then joining RT and QE we can prove 

q/sin Q = 2K and  r/sin R = 2K …………………………….. (1)

Therefore, in any triangle PQR we have,

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K


Note: (i) The relation \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) is known as Sine Rule.

(ii) Since, p : q : r = sin P : sin Q : sin R

Therefore, in any triangle the lengths of sides are proportional to the sines of opposite angles.

(iii) From (1) we get, p = 2K sin P, q = 2K sin Q and r = 2K sin R. These relations give the sides in terms of sines of angles.

Again, from (1) we get, sin P = p/2K, sin Q = q/2K and sin R = r/2K  

These relations give the sines of the angles in terms of the sides of any triangle.

Solved problems using theorem on properties of triangle:

1. In the triangle PQR, if P = 60°, show that,

                        q + r = 2p cos \(\frac{Q - R}{2}\)   

Solution:

We have,

We know that

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

\(\frac{q + r}{2p}\) = \(\frac{2K sin Q + 2K sin R}{2  ∙ 2K sin P}\), [Since, p = 2K sin P, q = 2K sin Q and r = 2K sin R]

      = \(\frac{sin Q + sin R}{2 sin P}\)

      = \(\frac{2 sin \frac{Q + R}{2} cos \frac{Q - R}{2}}{2 sin 60°}\)

      = \(\frac{sin 60° cos \frac{Q - R}{2}}{sin 60°}\),

[Since, P + Q + R = 180°, and P = 60° Therefore, Q + R = 180° - 60° = 120° ⇒ \(\frac{Q + R}{2}\) = 60°]

⇒ \(\frac{q + r}{2p}\) = cos \(\frac{Q - R}{2}\)           

Therefore, q + r = 2p cos \(\frac{Q - R}{2}\)        proved.


2. In any triangle PQR, prove that,

      (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R = 0.

Solution:

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

Now, (q\(^{2}\) - r\(^{2}\)) cot P = (4K\(^{2}\) sin\(^{2}\) Q - 4K\(^{2}\) sin\(^{2}\) R) cot P                                  

= 2K\(^{2}\) (2 sin\(^{2}\) Q - 2 sin\(^{2}\) R)

= 2K\(^{2}\) (1 - cos 2Q - 1 + cos 2R) cot P

= 2K\(^{2}\) [2 sin (Q + R) sin (Q - R)] cot P

=4K\(^{2}\) sin (π - P) sin (Q - R) cot A, [Since, P + Q + R = π]

= 4K\(^{2}\) sin P sin (Q - R) \(\frac{cos P}{sin P}\)

= 4K\(^{2}\) sin (Q - R) cos {π - (Q - R)}

= - 2K\(^{2}\) ∙ 2sin (Q - R) cos (Q + R)

= - 2K\(^{2}\) (sin 2Q - sin 2R)

Similarly, (r\(^{2}\) - p\(^{2}\)) cot Q = -2K\(^{2}\) (sin 2R - sin 2P)

and (p\(^{2}\) - q\(^{2}\)) cot R = -2K\(^{2}\) (sin 2R - sin 2Q)

Now L.H.S. = (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R

= - 2K\(^{2}\) (sin 2Q - sin 2R) - 2K\(^{2}\) (sin 2R - sin 2P) - 2K\(^{2}\)(sin 2P - sin 2Q)

= - 2K\(^{2}\) × 0

= 0 = R.H.S.                        Proved.

 Properties of Triangles




11 and 12 Grade Math

From Theorem on Properties of Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More