Theorem on Properties of Triangle

Proof the theorems on properties of triangle \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K

Proof:

Let O be the circum-centre and K the circum-radius of any triangle PQR.

Since in triangle PQR, three angles are acute in figure (i), then we observe that the triangle PQR is acute-angled in figure (ii), the triangle PQR is obtuse-angled (since its angle P is obtuse) and in figure (iii), the triangle PQR is right-angled (since the angle P is right angle). In figure (i) and figure (ii) we join QO and produce it to meet the circumference at S. Then join RS.

Clearly, QO = circum-radius = K  

Therefore, QS   = 2 ∙ QO = 2K and ∠QRS = 90° (being the semi-circular angle).

Now, from figure (i)we get,

∠QSR = ∠QPR = P (being the angles on the same arc QR).

Therefore, from the triangle QRS we have,

QR/QS = sin ∠QSR

⇒ p/2K = sin P 

⇒  p/sin P = 2K

Again, from figure (ii) we get,

∠QSR = π - P [Since, ∠QSR + ∠QPR = π]

Therefore, from the triangle QRS we get,

QR/QS = sin ∠QSR

⇒ p/2K = sin (π - P)

⇒ p/2K = sin P

⇒ a/sin P = 2K

Finally, for right-angled triangle, we get from figure (iii),

2K = p = p/sin 90° = p/sin P    [Since, P = 90°]

Therefore, for any triangle PQR (acute-angled, or obtuse-angled or right-angled) we have,

Similarly, if we join PO and produce it to meet the circumference at T then joining RT and QE we can prove 

q/sin Q = 2K and  r/sin R = 2K …………………………….. (1)

Therefore, in any triangle PQR we have,

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K


Note: (i) The relation \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) is known as Sine Rule.

(ii) Since, p : q : r = sin P : sin Q : sin R

Therefore, in any triangle the lengths of sides are proportional to the sines of opposite angles.

(iii) From (1) we get, p = 2K sin P, q = 2K sin Q and r = 2K sin R. These relations give the sides in terms of sines of angles.

Again, from (1) we get, sin P = p/2K, sin Q = q/2K and sin R = r/2K  

These relations give the sines of the angles in terms of the sides of any triangle.

Solved problems using theorem on properties of triangle:

1. In the triangle PQR, if P = 60°, show that,

                        q + r = 2p cos \(\frac{Q - R}{2}\)   

Solution:

We have,

We know that

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

\(\frac{q + r}{2p}\) = \(\frac{2K sin Q + 2K sin R}{2  ∙ 2K sin P}\), [Since, p = 2K sin P, q = 2K sin Q and r = 2K sin R]

      = \(\frac{sin Q + sin R}{2 sin P}\)

      = \(\frac{2 sin \frac{Q + R}{2} cos \frac{Q - R}{2}}{2 sin 60°}\)

      = \(\frac{sin 60° cos \frac{Q - R}{2}}{sin 60°}\),

[Since, P + Q + R = 180°, and P = 60° Therefore, Q + R = 180° - 60° = 120° ⇒ \(\frac{Q + R}{2}\) = 60°]

⇒ \(\frac{q + r}{2p}\) = cos \(\frac{Q - R}{2}\)           

Therefore, q + r = 2p cos \(\frac{Q - R}{2}\)        proved.


2. In any triangle PQR, prove that,

      (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R = 0.

Solution:

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

Now, (q\(^{2}\) - r\(^{2}\)) cot P = (4K\(^{2}\) sin\(^{2}\) Q - 4K\(^{2}\) sin\(^{2}\) R) cot P                                  

= 2K\(^{2}\) (2 sin\(^{2}\) Q - 2 sin\(^{2}\) R)

= 2K\(^{2}\) (1 - cos 2Q - 1 + cos 2R) cot P

= 2K\(^{2}\) [2 sin (Q + R) sin (Q - R)] cot P

=4K\(^{2}\) sin (π - P) sin (Q - R) cot A, [Since, P + Q + R = π]

= 4K\(^{2}\) sin P sin (Q - R) \(\frac{cos P}{sin P}\)

= 4K\(^{2}\) sin (Q - R) cos {π - (Q - R)}

= - 2K\(^{2}\) ∙ 2sin (Q - R) cos (Q + R)

= - 2K\(^{2}\) (sin 2Q - sin 2R)

Similarly, (r\(^{2}\) - p\(^{2}\)) cot Q = -2K\(^{2}\) (sin 2R - sin 2P)

and (p\(^{2}\) - q\(^{2}\)) cot R = -2K\(^{2}\) (sin 2R - sin 2Q)

Now L.H.S. = (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R

= - 2K\(^{2}\) (sin 2Q - sin 2R) - 2K\(^{2}\) (sin 2R - sin 2P) - 2K\(^{2}\)(sin 2P - sin 2Q)

= - 2K\(^{2}\) × 0

= 0 = R.H.S.                        Proved.

 Properties of Triangles




11 and 12 Grade Math

From Theorem on Properties of Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Relation between Diameter Radius and Circumference |Problems |Examples

    Apr 22, 24 05:19 PM

    Relation between Radius and Diameter of a Circle
    Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

    Read More

  2. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 22, 24 01:35 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  3. Preschool Math Activities | Colorful Preschool Worksheets | Lesson

    Apr 21, 24 10:57 AM

    Preschool Math Activities
    Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 20, 24 05:29 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More