Theorem on Properties of Triangle

Proof the theorems on properties of triangle \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K

Proof:

Let O be the circum-centre and K the circum-radius of any triangle PQR.

Since in triangle PQR, three angles are acute in figure (i), then we observe that the triangle PQR is acute-angled in figure (ii), the triangle PQR is obtuse-angled (since its angle P is obtuse) and in figure (iii), the triangle PQR is right-angled (since the angle P is right angle). In figure (i) and figure (ii) we join QO and produce it to meet the circumference at S. Then join RS.

Clearly, QO = circum-radius = K  

Therefore, QS   = 2 ∙ QO = 2K and ∠QRS = 90° (being the semi-circular angle).

Now, from figure (i)we get,

∠QSR = ∠QPR = P (being the angles on the same arc QR).

Therefore, from the triangle QRS we have,

QR/QS = sin ∠QSR

⇒ p/2K = sin P 

⇒  p/sin P = 2K

Again, from figure (ii) we get,

∠QSR = π - P [Since, ∠QSR + ∠QPR = π]

Therefore, from the triangle QRS we get,

QR/QS = sin ∠QSR

⇒ p/2K = sin (π - P)

⇒ p/2K = sin P

⇒ a/sin P = 2K

Finally, for right-angled triangle, we get from figure (iii),

2K = p = p/sin 90° = p/sin P    [Since, P = 90°]

Therefore, for any triangle PQR (acute-angled, or obtuse-angled or right-angled) we have,

Similarly, if we join PO and produce it to meet the circumference at T then joining RT and QE we can prove 

q/sin Q = 2K and  r/sin R = 2K …………………………….. (1)

Therefore, in any triangle PQR we have,

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K


Note: (i) The relation \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) is known as Sine Rule.

(ii) Since, p : q : r = sin P : sin Q : sin R

Therefore, in any triangle the lengths of sides are proportional to the sines of opposite angles.

(iii) From (1) we get, p = 2K sin P, q = 2K sin Q and r = 2K sin R. These relations give the sides in terms of sines of angles.

Again, from (1) we get, sin P = p/2K, sin Q = q/2K and sin R = r/2K  

These relations give the sines of the angles in terms of the sides of any triangle.

Solved problems using theorem on properties of triangle:

1. In the triangle PQR, if P = 60°, show that,

                        q + r = 2p cos \(\frac{Q - R}{2}\)   

Solution:

We have,

We know that

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

\(\frac{q + r}{2p}\) = \(\frac{2K sin Q + 2K sin R}{2  ∙ 2K sin P}\), [Since, p = 2K sin P, q = 2K sin Q and r = 2K sin R]

      = \(\frac{sin Q + sin R}{2 sin P}\)

      = \(\frac{2 sin \frac{Q + R}{2} cos \frac{Q - R}{2}}{2 sin 60°}\)

      = \(\frac{sin 60° cos \frac{Q - R}{2}}{sin 60°}\),

[Since, P + Q + R = 180°, and P = 60° Therefore, Q + R = 180° - 60° = 120° ⇒ \(\frac{Q + R}{2}\) = 60°]

⇒ \(\frac{q + r}{2p}\) = cos \(\frac{Q - R}{2}\)           

Therefore, q + r = 2p cos \(\frac{Q - R}{2}\)        proved.


2. In any triangle PQR, prove that,

      (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R = 0.

Solution:

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

Now, (q\(^{2}\) - r\(^{2}\)) cot P = (4K\(^{2}\) sin\(^{2}\) Q - 4K\(^{2}\) sin\(^{2}\) R) cot P                                  

= 2K\(^{2}\) (2 sin\(^{2}\) Q - 2 sin\(^{2}\) R)

= 2K\(^{2}\) (1 - cos 2Q - 1 + cos 2R) cot P

= 2K\(^{2}\) [2 sin (Q + R) sin (Q - R)] cot P

=4K\(^{2}\) sin (π - P) sin (Q - R) cot A, [Since, P + Q + R = π]

= 4K\(^{2}\) sin P sin (Q - R) \(\frac{cos P}{sin P}\)

= 4K\(^{2}\) sin (Q - R) cos {π - (Q - R)}

= - 2K\(^{2}\) ∙ 2sin (Q - R) cos (Q + R)

= - 2K\(^{2}\) (sin 2Q - sin 2R)

Similarly, (r\(^{2}\) - p\(^{2}\)) cot Q = -2K\(^{2}\) (sin 2R - sin 2P)

and (p\(^{2}\) - q\(^{2}\)) cot R = -2K\(^{2}\) (sin 2R - sin 2Q)

Now L.H.S. = (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R

= - 2K\(^{2}\) (sin 2Q - sin 2R) - 2K\(^{2}\) (sin 2R - sin 2P) - 2K\(^{2}\)(sin 2P - sin 2Q)

= - 2K\(^{2}\) × 0

= 0 = R.H.S.                        Proved.

 Properties of Triangles




11 and 12 Grade Math

From Theorem on Properties of Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Apr 20, 25 11:46 AM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Word Problems on Division | Examples on Word Problems on Division

    Apr 20, 25 11:17 AM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  3. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 20, 25 10:27 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  4. Subtraction without Regrouping |4-Digit, 5-Digit & 6-Digit Subtraction

    Apr 20, 25 10:25 AM

    Subtraction without Regrouping
    We will learn subtracting 4-digit, 5-digit and 6-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then subtract the digits under each colum…

    Read More

  5. Worksheets on Missing Numbers from 1 to 20 | Counting Missing Numbers

    Apr 20, 25 10:17 AM

    Printable worksheets on missing numbers
    Printable worksheets on missing numbers from 1 to 20 help the kids to practice counting of the numbers.

    Read More