Area of a Triangle

If ∆ be the area of a triangle ABC, Proved that, ∆ = ½ bc sin A = ½ ca sin B = ½ ab sin C

That is,

(i) ∆ = ½ bc sin A

(ii) ∆ = ½ ca sin B

(iii) ∆ = ½ ab sin C


Proof:

(i) ∆ = ½ bc sin A

Let ABC is a triangle. Then the following three cases arise:

Case I: When the triangle ABC is acute-angled:

Now form the above diagram we have,

sin C = AD/AC

sin C = AD/b, [Since, AC = b]

 AD = b sin C ……………………….. (1)

 Therefore, ∆ = area of triangle ABC

= 1/2 base × altitude

Area of Acute-angled Triangle

= ½ ∙ BC ∙ AD  

= ½ ∙ a ∙ b sin C, [From (1)]

= ½ ab sin C


Case II: When the triangle ABC is obtuse-angled:

Now form the above diagram we have,

sin (180° - C) = AD/AC

sin C = AD/AC, [Since, sin (π - θ) = sin θ]

sin C = AD/b, [Since, AC = b]

AD = b sin C ……………………….. (2)

Therefore, ∆ = area of the triangle ABC

Area of Obtuse-angled Triangle

= ½ base x altitude

= ½ ∙ BC ∙ AD

= ½ ∙ a ∙ b sin C, [From (1)]  

= ½ ab sin C


Case III: When the triangle ABC is right-angled

Now form the above diagram we have,

∆ = area of triangle ABC

= ½ base x altitude

= ½ ∙ BC ∙ AD  

= ½ ∙ BC ∙ AC

= ½ ∙ a ∙ b

Area of Right-angled Triangle

= ½ ∙ a ∙ b ∙ 1, [Since, ∠C = 90°. Therefore, sin C = sin 90° = 1]

= ½ ab sin C

Therefore, in all three cases, we have ∆ = ½ ab sin C

In a similar manner we can prove the other results, (ii) ∆ = ½ ca sin B and (iii) ∆ = ½ ab sin C.

 Properties of Triangles






11 and 12 Grade Math

From Area of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?