Projection Formulae

Projection formulae is the length of any side of a triangle is equal to the sum of the projections of other two sides on it.

In Any Triangle ABC,

(i) a = b cos C + c cos B

(ii)  b = c cos A + a cos C

(iii) c = a cos B +  b cos A


Proof:   

Let ABC be a triangle. Then the following three cases arises:

Case I: If ABC is an acute-angled triangle then we get,

           a = BC = BD + CD ………………………… (i)

Now from the triangle ABD we have,

cos B = BD/AB   

⇒ BD = AB cos B

⇒ BD = c cos B, [since, AB = c]

Again, cos C = CD/AC  

⇒ CD = AC cos C 

⇒ CD = b cos C, [since, AC = b]

Projection Formulae

Now, substitute the value of BD and CD in equation (i) we get,

        a = c cos B + b cos C         

Note: We observe in the above diagram BD and CD are projections of AB and AC respectively on BC.


Case II: If ABC is an acute-angled triangle then we get,

            a = BC = CD - BD                                           ………………………… (ii)

Now from the triangle ADC we have,

cos C =  CD/AC   

⇒ CD = AC cos C

⇒ CD = b cos C, [since, AC = b]

Again, cos (π - B) = BD/AB  

⇒ BD = AB cos (π - B)

a = b cos C + c cos B

⇒ BD = -c cos B, [since, AB = c and cos (π - θ) = -cos θ]

Now, substitute the value of BD and CD in equation (ii) we get,

       a = b cos C - (-c cos B)

⇒ a = b cos C + c cos B


Case III: If ABC is a right-angled triangle then we get,

             a = BC                                              ………………………… (iii)

and cos B =  BC/AB   

⇒ BC = AB cos B

⇒ BC = c cos B, [since, AB = c]

Now, substitute the value of BC in equation (iii) we get,

       a = c cos B

⇒ a = c cos B + 0

b = c cos A + a cos C

⇒ a = c cos B + b cos C, [since C = 90° ⇒ cos C = cos 90 = 0] 

Therefore, in any triangle ABC we get, a = b cos C + c cos B

Similarly, we can prove that the formulae b = c cos A + a cos C and c = a cos B + b cos A.


Solved problem using the projection formulae:

If the area of the triangle ABC be ∆, show that,
                       b\(^{2}\) sin 2C + c\(^{2}\) sin 2B = 4∆.

Solution:

b\(^{2}\) sin 2C + c\(^{2}\) sin 2B

= b\(^{2}\) 2 sin C cos C + c\(^{2}\) ∙ 2 sin B cos B

= 2b cos C ∙ b sin C + 2c cos B ∙ c sin B

= 2b cos C ∙ c sin B + 2c cos B ∙ c sin B, [Since, a/sin B = c/sin C b sin C = c sin B]

= 2c sin B (b cos C + c cos B)

= 2c sin B ∙ a [Since, we know that, a = b cos C + c cos B]

= 4 ∙ ½ ac sin B

= 4∆.                        Proved.

 Properties of Triangles





11 and 12 Grade Math

From Projection Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More