Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Projection Formulae

Projection formulae is the length of any side of a triangle is equal to the sum of the projections of other two sides on it.

In Any Triangle ABC,

(i) a = b cos C + c cos B

(ii)  b = c cos A + a cos C

(iii) c = a cos B +  b cos A


Proof:   

Let ABC be a triangle. Then the following three cases arises:

Case I: If ABC is an acute-angled triangle then we get,

           a = BC = BD + CD ………………………… (i)

Now from the triangle ABD we have,

cos B = BD/AB   

⇒ BD = AB cos B

⇒ BD = c cos B, [since, AB = c]

Again, cos C = CD/AC  

⇒ CD = AC cos C 

⇒ CD = b cos C, [since, AC = b]

Projection Formulae

Now, substitute the value of BD and CD in equation (i) we get,

        a = c cos B + b cos C         

Note: We observe in the above diagram BD and CD are projections of AB and AC respectively on BC.


Case II: If ABC is an acute-angled triangle then we get,

            a = BC = CD - BD                                           ………………………… (ii)

Now from the triangle ADC we have,

cos C =  CD/AC   

⇒ CD = AC cos C

⇒ CD = b cos C, [since, AC = b]

Again, cos (π - B) = BD/AB  

⇒ BD = AB cos (π - B)

a = b cos C + c cos B

⇒ BD = -c cos B, [since, AB = c and cos (π - θ) = -cos θ]

Now, substitute the value of BD and CD in equation (ii) we get,

       a = b cos C - (-c cos B)

⇒ a = b cos C + c cos B


Case III: If ABC is a right-angled triangle then we get,

             a = BC                                              ………………………… (iii)

and cos B =  BC/AB   

⇒ BC = AB cos B

⇒ BC = c cos B, [since, AB = c]

Now, substitute the value of BC in equation (iii) we get,

       a = c cos B

⇒ a = c cos B + 0

b = c cos A + a cos C

⇒ a = c cos B + b cos C, [since C = 90° ⇒ cos C = cos 90 = 0] 

Therefore, in any triangle ABC we get, a = b cos C + c cos B

Similarly, we can prove that the formulae b = c cos A + a cos C and c = a cos B + b cos A.


Solved problem using the projection formulae:

If the area of the triangle ABC be ∆, show that,
                       b2 sin 2C + c2 sin 2B = 4∆.

Solution:

b2 sin 2C + c2 sin 2B

= b2 2 sin C cos C + c2 ∙ 2 sin B cos B

= 2b cos C ∙ b sin C + 2c cos B ∙ c sin B

= 2b cos C ∙ c sin B + 2c cos B ∙ c sin B, [Since, a/sin B = c/sin C b sin C = c sin B]

= 2c sin B (b cos C + c cos B)

= 2c sin B ∙ a [Since, we know that, a = b cos C + c cos B]

= 4 ∙ ½ ac sin B

= 4∆.                        Proved.

 Properties of Triangles





11 and 12 Grade Math

From Projection Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More