The Law of Cosines

We will discuss here about the law of cosines or the cosine rule which is required for solving the problems on triangle. 

In any triangle ABC, Prove that,

(i) b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca. cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

(ii) a\(^{2}\) = b\(^{2}\) + c\(^{2}\) - 2ab. cos A or, cos A = \(\frac{b^{2} + c^{2} - a^{2}}{2bc}\)

(iii) c\(^{2}\) = a\(^{2}\) + b\(^{2}\) - 2ab. cos C or, cos C = \(\frac{a^{2} + b^{2} - c^{2}}{2ab}\)

 

Proof of the law of cosines:

Let ABC is a triangle. Then the following three cases arise:

Case I: When the triangle ABC is acute-angled:

Now form the triangle ABD, we have,

cos B = BD/BC

⇒ cos B = BD/c

⇒ BD = c cos B ……………………………………. (1)

Again from the triangle ACD, we have

cos C = CD/CA

⇒ cos C = CD/b

⇒ CD = b cos C

By using the Pythagoras theorem on the triangle ACD, we get

AC\(^{2}\) = AD\(^{2}\) + CD\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + (BC - BD)\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + BC\(^{2}\) + BD\(^{2}\) - 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + (AD\(^{2}\) + BD\(^{2}\)) - 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + AB\(^{2}\) - 2 BC ∙ BD, [Since From triangle, we get, AD\(^{2}\) + BD\(^{2}\) = AB\(^{2}\)]

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2a ∙ c cos B, [From (1)]

⇒ b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)


Case II: When the triangle ABC is obtuse-angled:

The triangle ABC is obtuse angled.

Now, draw AD from A which is perpendicular to produced BC. Clearly, D lies on produced BC.

Now from the triangle ABD, we have,

cos (180° - B) = BD/AB

⇒- cos B = BD/AB, [Since, cos (180° - B) = - cos B]

⇒ BD = -AB cos B

⇒ BD = -c cos B ……………………………………. (2)

By using the Pythagoras theorem on the triangle ACD, we get

AC\(^{2}\) = AD\(^{2}\) + CD\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + (BC + BD)\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + BC\(^{2}\) + BD\(^{2}\) + 2 BC ∙ BD

⇒ AC\(^{2}\)= BC\(^{2}\)+ (AD^2 + BD^2) + 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + AB\(^{2}\) + 2 BC ∙ BD, [Since From triangle, we get, AD\(^{2}\) + BD\(^{2}\) = AB\(^{2}\)]

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) + 2a ∙ (-c - cos B), [From (2)]

⇒ b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)


Case III: Right angled triangle (one angle is right angle):  The triangle ABC is right angled. The angle B is a right angle.

Now by using the Pythagoras theorem we get,

b\(^{2}\) = AC\(^{2}\) = BC\(^{2}\) + BA\(^{2}\) = a\(^{2}\) + c\(^{2}\)

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\)

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2ac cos B, [We know that cos 90° = 0 and B = 90°. Therefore, cos B = 0] or, cos B = \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

Therefore, in all three cases, we get,

b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2ac cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

Similarly, we can prove that the formulae (ii) a\(^{2}\) = b\(^{2}\) + c\(^{2}\) - 2ab. cos A or, cos A = \(\frac{b^{2} + c^{2} - a^{2}}{2bc}\) and (iii) c\(^{2}\) = a\(^{2}\) + b\(^{2}\) - 2ab. cos C or, cos C = \(\frac{a^{2} + b^{2} - c^{2}}{2ab}\).


Solved problem using the law of Cosines:

In the triangle ABC, if a = 5, b = 7 and c = 3; find the angle B and the circum-radius R.

Solution:

Using the formula, cos B = \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\) we get,

cos B = \(\frac{3^{2} + 5^{2} - 7^{2}}{2 ∙ 3 ∙ 5}\)

cos B = \(\frac{9 + 25 - 49}{30}\)

cos B = - 1/2

cos B = cos 120°

Therefore, B = 120°

Again, if R be the required circum-radius then,

b/sin B = 2R

⇒ 2R = 7/sin 120°

⇒ 2R = 7 ∙ 2/√3                      

Therefore, R = 7/√3 = (7√3)/3 units.

 Properties of Triangles






11 and 12 Grade Math 

From The Law of Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Comparing and Ordering Decimals |Arranging Decimals

    Apr 19, 25 12:16 PM

    Arranging Decimals
    Practice different types of math questions given in the worksheet on comparing and ordering decimals. This worksheet contains questions mainly related to compare decimals and then place the decimals i…

    Read More

  2. Comparison of Decimal Fractions | Comparing Decimals Numbers | Decimal

    Apr 19, 25 11:47 AM

    Comparison of Decimal Fractions
    While comparing natural numbers we first compare total number of digits in both the numbers and if they are equal then we compare the digit at the extreme left. If they also equal then we compare the…

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 19, 25 11:25 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Missing Numbers up to 10 | Worksheets on Missing Numbers up to 10

    Apr 18, 25 04:53 PM

    missing numbers up to 10
    Printable worksheets on missing numbers up to 10 help the kids to practice counting of the numbers.

    Read More

  5. Ordering Decimals | Comparing Decimals | Ascending & Descending Order

    Apr 18, 25 01:49 PM

    Ordering Decimal Numbers
    In ordering decimals we will learn how to compare two or more decimals. (i) Convert each of them as like decimals. (ii) Compare these decimals just as we compare two whole numbers ignoring

    Read More