The Law of Cosines

We will discuss here about the law of cosines or the cosine rule which is required for solving the problems on triangle. 

In any triangle ABC, Prove that,

(i) b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca. cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

(ii) a\(^{2}\) = b\(^{2}\) + c\(^{2}\) - 2ab. cos A or, cos A = \(\frac{b^{2} + c^{2} - a^{2}}{2bc}\)

(iii) c\(^{2}\) = a\(^{2}\) + b\(^{2}\) - 2ab. cos C or, cos C = \(\frac{a^{2} + b^{2} - c^{2}}{2ab}\)

 

Proof of the law of cosines:

Let ABC is a triangle. Then the following three cases arise:

Case I: When the triangle ABC is acute-angled:

Now form the triangle ABD, we have,

cos B = BD/BC

⇒ cos B = BD/c

⇒ BD = c cos B ……………………………………. (1)

Again from the triangle ACD, we have

cos C = CD/CA

⇒ cos C = CD/b

⇒ CD = b cos C

By using the Pythagoras theorem on the triangle ACD, we get

AC\(^{2}\) = AD\(^{2}\) + CD\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + (BC - BD)\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + BC\(^{2}\) + BD\(^{2}\) - 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + (AD\(^{2}\) + BD\(^{2}\)) - 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + AB\(^{2}\) - 2 BC ∙ BD, [Since From triangle, we get, AD\(^{2}\) + BD\(^{2}\) = AB\(^{2}\)]

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2a ∙ c cos B, [From (1)]

⇒ b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)


Case II: When the triangle ABC is obtuse-angled:

The triangle ABC is obtuse angled.

Now, draw AD from A which is perpendicular to produced BC. Clearly, D lies on produced BC.

Now from the triangle ABD, we have,

cos (180° - B) = BD/AB

⇒- cos B = BD/AB, [Since, cos (180° - B) = - cos B]

⇒ BD = -AB cos B

⇒ BD = -c cos B ……………………………………. (2)

By using the Pythagoras theorem on the triangle ACD, we get

AC\(^{2}\) = AD\(^{2}\) + CD\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + (BC + BD)\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + BC\(^{2}\) + BD\(^{2}\) + 2 BC ∙ BD

⇒ AC\(^{2}\)= BC\(^{2}\)+ (AD^2 + BD^2) + 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + AB\(^{2}\) + 2 BC ∙ BD, [Since From triangle, we get, AD\(^{2}\) + BD\(^{2}\) = AB\(^{2}\)]

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) + 2a ∙ (-c - cos B), [From (2)]

⇒ b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)


Case III: Right angled triangle (one angle is right angle):  The triangle ABC is right angled. The angle B is a right angle.

Now by using the Pythagoras theorem we get,

b\(^{2}\) = AC\(^{2}\) = BC\(^{2}\) + BA\(^{2}\) = a\(^{2}\) + c\(^{2}\)

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\)

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2ac cos B, [We know that cos 90° = 0 and B = 90°. Therefore, cos B = 0] or, cos B = \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

Therefore, in all three cases, we get,

b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2ac cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

Similarly, we can prove that the formulae (ii) a\(^{2}\) = b\(^{2}\) + c\(^{2}\) - 2ab. cos A or, cos A = \(\frac{b^{2} + c^{2} - a^{2}}{2bc}\) and (iii) c\(^{2}\) = a\(^{2}\) + b\(^{2}\) - 2ab. cos C or, cos C = \(\frac{a^{2} + b^{2} - c^{2}}{2ab}\).


Solved problem using the law of Cosines:

In the triangle ABC, if a = 5, b = 7 and c = 3; find the angle B and the circum-radius R.

Solution:

Using the formula, cos B = \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\) we get,

cos B = \(\frac{3^{2} + 5^{2} - 7^{2}}{2 ∙ 3 ∙ 5}\)

cos B = \(\frac{9 + 25 - 49}{30}\)

cos B = - 1/2

cos B = cos 120°

Therefore, B = 120°

Again, if R be the required circum-radius then,

b/sin B = 2R

⇒ 2R = 7/sin 120°

⇒ 2R = 7 ∙ 2/√3                      

Therefore, R = 7/√3 = (7√3)/3 units.

 Properties of Triangles






11 and 12 Grade Math 

From The Law of Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More