# The Law of Cosines

We will discuss here about the law of cosines or the cosine rule which is required for solving the problems on triangle.

In any triangle ABC, Prove that,

(i) b$$^{2}$$ = c$$^{2}$$ + a$$^{2}$$ - 2ca. cos B or, cos B =  $$\frac{c^{2} + a^{2} - b^{2}}{2ca}$$

(ii) a$$^{2}$$ = b$$^{2}$$ + c$$^{2}$$ - 2ab. cos A or, cos A = $$\frac{b^{2} + c^{2} - a^{2}}{2bc}$$

(iii) c$$^{2}$$ = a$$^{2}$$ + b$$^{2}$$ - 2ab. cos C or, cos C = $$\frac{a^{2} + b^{2} - c^{2}}{2ab}$$

Proof of the law of cosines:

Let ABC is a triangle. Then the following three cases arise:

Case I: When the triangle ABC is acute-angled:

Now form the triangle ABD, we have,

cos B = BD/BC

⇒ cos B = BD/c

⇒ BD = c cos B ……………………………………. (1)

Again from the triangle ACD, we have

cos C = CD/CA

⇒ cos C = CD/b

⇒ CD = b cos C

By using the Pythagoras theorem on the triangle ACD, we get

AC$$^{2}$$ = AD$$^{2}$$ + CD$$^{2}$$

⇒ AC$$^{2}$$ = AD$$^{2}$$ + (BC - BD)$$^{2}$$

⇒ AC$$^{2}$$ = AD$$^{2}$$ + BC$$^{2}$$ + BD$$^{2}$$ - 2 BC ∙ BD

⇒ AC$$^{2}$$ = BC$$^{2}$$ + (AD$$^{2}$$ + BD$$^{2}$$) - 2 BC ∙ BD

⇒ AC$$^{2}$$ = BC$$^{2}$$ + AB$$^{2}$$ - 2 BC ∙ BD, [Since From triangle, we get, AD$$^{2}$$ + BD$$^{2}$$ = AB$$^{2}$$]

⇒ b$$^{2}$$ = a$$^{2}$$ + c$$^{2}$$ - 2a ∙ c cos B, [From (1)]

⇒ b$$^{2}$$ = c$$^{2}$$ + a$$^{2}$$ - 2ca cos B or, cos B =  $$\frac{c^{2} + a^{2} - b^{2}}{2ca}$$

Case II: When the triangle ABC is obtuse-angled:

The triangle ABC is obtuse angled.

Now, draw AD from A which is perpendicular to produced BC. Clearly, D lies on produced BC.

Now from the triangle ABD, we have,

cos (180° - B) = BD/AB

⇒- cos B = BD/AB, [Since, cos (180° - B) = - cos B]

⇒ BD = -AB cos B

⇒ BD = -c cos B ……………………………………. (2)

By using the Pythagoras theorem on the triangle ACD, we get

AC$$^{2}$$ = AD$$^{2}$$ + CD$$^{2}$$

⇒ AC$$^{2}$$ = AD$$^{2}$$ + (BC + BD)$$^{2}$$

⇒ AC$$^{2}$$ = AD$$^{2}$$ + BC$$^{2}$$ + BD$$^{2}$$ + 2 BC ∙ BD

⇒ AC$$^{2}$$= BC$$^{2}$$+ (AD^2 + BD^2) + 2 BC ∙ BD

⇒ AC$$^{2}$$ = BC$$^{2}$$ + AB$$^{2}$$ + 2 BC ∙ BD, [Since From triangle, we get, AD$$^{2}$$ + BD$$^{2}$$ = AB$$^{2}$$]

⇒ b$$^{2}$$ = a$$^{2}$$ + c$$^{2}$$ + 2a ∙ (-c - cos B), [From (2)]

⇒ b$$^{2}$$ = c$$^{2}$$ + a$$^{2}$$ - 2ca cos B or, cos B =  $$\frac{c^{2} + a^{2} - b^{2}}{2ca}$$

Case III: Right angled triangle (one angle is right angle):  The triangle ABC is right angled. The angle B is a right angle.

Now by using the Pythagoras theorem we get,

b$$^{2}$$ = AC$$^{2}$$ = BC$$^{2}$$ + BA$$^{2}$$ = a$$^{2}$$ + c$$^{2}$$

⇒ b$$^{2}$$ = a$$^{2}$$ + c$$^{2}$$

⇒ b$$^{2}$$ = a$$^{2}$$ + c$$^{2}$$ - 2ac cos B, [We know that cos 90° = 0 and B = 90°. Therefore, cos B = 0] or, cos B = $$\frac{c^{2} + a^{2} - b^{2}}{2ca}$$

Therefore, in all three cases, we get,

b$$^{2}$$ = a$$^{2}$$ + c$$^{2}$$ - 2ac cos B or, cos B =  $$\frac{c^{2} + a^{2} - b^{2}}{2ca}$$

Similarly, we can prove that the formulae (ii) a$$^{2}$$ = b$$^{2}$$ + c$$^{2}$$ - 2ab. cos A or, cos A = $$\frac{b^{2} + c^{2} - a^{2}}{2bc}$$ and (iii) c$$^{2}$$ = a$$^{2}$$ + b$$^{2}$$ - 2ab. cos C or, cos C = $$\frac{a^{2} + b^{2} - c^{2}}{2ab}$$.

Solved problem using the law of Cosines:

In the triangle ABC, if a = 5, b = 7 and c = 3; find the angle B and the circum-radius R.

Solution:

Using the formula, cos B = $$\frac{c^{2} + a^{2} - b^{2}}{2ca}$$ we get,

cos B = $$\frac{3^{2} + 5^{2} - 7^{2}}{2 ∙ 3 ∙ 5}$$

cos B = $$\frac{9 + 25 - 49}{30}$$

cos B = - 1/2

cos B = cos 120°

Therefore, B = 120°

Again, if R be the required circum-radius then,

b/sin B = 2R

⇒ 2R = 7/sin 120°

⇒ 2R = 7 ∙ 2/√3

Therefore, R = 7/√3 = (7√3)/3 units.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Lines of Symmetry | Symmetry of Geometrical Figures | List of Examples

Aug 10, 24 03:27 PM

Learn about lines of symmetry in different geometrical shapes. It is not necessary that all the figures possess a line or lines of symmetry in different figures.

2. ### Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

Aug 10, 24 02:25 AM

Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

Aug 10, 24 01:59 AM

In 6th grade math practice you will get all types of examples on different topics along with the step-by-step explanation of the solutions.

4. ### 6th Grade Algebra Worksheet | Pre-Algebra worksheets with Free Answers

Aug 10, 24 01:57 AM

In 6th Grade Algebra Worksheet you will get different types of questions on basic concept of algebra, questions on number pattern, dot pattern, number sequence pattern, pattern from matchsticks, conce…