The Law of Cosines

We will discuss here about the law of cosines or the cosine rule which is required for solving the problems on triangle. 

In any triangle ABC, Prove that,

(i) b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca. cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

(ii) a\(^{2}\) = b\(^{2}\) + c\(^{2}\) - 2ab. cos A or, cos A = \(\frac{b^{2} + c^{2} - a^{2}}{2bc}\)

(iii) c\(^{2}\) = a\(^{2}\) + b\(^{2}\) - 2ab. cos C or, cos C = \(\frac{a^{2} + b^{2} - c^{2}}{2ab}\)

 

Proof of the law of cosines:

Let ABC is a triangle. Then the following three cases arise:

Case I: When the triangle ABC is acute-angled:

Now form the triangle ABD, we have,

cos B = BD/BC

⇒ cos B = BD/c

⇒ BD = c cos B ……………………………………. (1)

Again from the triangle ACD, we have

cos C = CD/CA

⇒ cos C = CD/b

⇒ CD = b cos C

By using the Pythagoras theorem on the triangle ACD, we get

AC\(^{2}\) = AD\(^{2}\) + CD\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + (BC - BD)\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + BC\(^{2}\) + BD\(^{2}\) - 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + (AD\(^{2}\) + BD\(^{2}\)) - 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + AB\(^{2}\) - 2 BC ∙ BD, [Since From triangle, we get, AD\(^{2}\) + BD\(^{2}\) = AB\(^{2}\)]

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2a ∙ c cos B, [From (1)]

⇒ b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)


Case II: When the triangle ABC is obtuse-angled:

The triangle ABC is obtuse angled.

Now, draw AD from A which is perpendicular to produced BC. Clearly, D lies on produced BC.

Now from the triangle ABD, we have,

cos (180° - B) = BD/AB

⇒- cos B = BD/AB, [Since, cos (180° - B) = - cos B]

⇒ BD = -AB cos B

⇒ BD = -c cos B ……………………………………. (2)

By using the Pythagoras theorem on the triangle ACD, we get

AC\(^{2}\) = AD\(^{2}\) + CD\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + (BC + BD)\(^{2}\)

⇒ AC\(^{2}\) = AD\(^{2}\) + BC\(^{2}\) + BD\(^{2}\) + 2 BC ∙ BD

⇒ AC\(^{2}\)= BC\(^{2}\)+ (AD^2 + BD^2) + 2 BC ∙ BD

⇒ AC\(^{2}\) = BC\(^{2}\) + AB\(^{2}\) + 2 BC ∙ BD, [Since From triangle, we get, AD\(^{2}\) + BD\(^{2}\) = AB\(^{2}\)]

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) + 2a ∙ (-c - cos B), [From (2)]

⇒ b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)


Case III: Right angled triangle (one angle is right angle):  The triangle ABC is right angled. The angle B is a right angle.

Now by using the Pythagoras theorem we get,

b\(^{2}\) = AC\(^{2}\) = BC\(^{2}\) + BA\(^{2}\) = a\(^{2}\) + c\(^{2}\)

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\)

⇒ b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2ac cos B, [We know that cos 90° = 0 and B = 90°. Therefore, cos B = 0] or, cos B = \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

Therefore, in all three cases, we get,

b\(^{2}\) = a\(^{2}\) + c\(^{2}\) - 2ac cos B or, cos B =  \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)

Similarly, we can prove that the formulae (ii) a\(^{2}\) = b\(^{2}\) + c\(^{2}\) - 2ab. cos A or, cos A = \(\frac{b^{2} + c^{2} - a^{2}}{2bc}\) and (iii) c\(^{2}\) = a\(^{2}\) + b\(^{2}\) - 2ab. cos C or, cos C = \(\frac{a^{2} + b^{2} - c^{2}}{2ab}\).


Solved problem using the law of Cosines:

In the triangle ABC, if a = 5, b = 7 and c = 3; find the angle B and the circum-radius R.

Solution:

Using the formula, cos B = \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\) we get,

cos B = \(\frac{3^{2} + 5^{2} - 7^{2}}{2 ∙ 3 ∙ 5}\)

cos B = \(\frac{9 + 25 - 49}{30}\)

cos B = - 1/2

cos B = cos 120°

Therefore, B = 120°

Again, if R be the required circum-radius then,

b/sin B = 2R

⇒ 2R = 7/sin 120°

⇒ 2R = 7 ∙ 2/√3                      

Therefore, R = 7/√3 = (7√3)/3 units.

 Properties of Triangles






11 and 12 Grade Math 

From The Law of Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  2. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More

  3. Mental Math on Geometrical Shapes | Geometry Worksheets| Answer

    Apr 24, 24 03:35 PM

    In mental math on geometrical shapes we will solve different type of problems on simple closed curves, polygons, basic geometrical concepts, perpendicular lines, parallel lines, circle, terms relates…

    Read More

  4. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 24, 24 02:57 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  5. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 24, 24 12:38 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More