The Law of Sines

We will discuss here about the law of sines or the sine rule which is required for solving the problems on triangle.

In any triangle the sides of a triangle are proportional to the sines of the angles opposite to them.

That is in any triangle ABC,                     

                                            \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Proof:

Let ABC be a triangle.


Now will derive the three different cases:

Case I: Acute angled triangle (three angles are acute): The triangle ABC is acute-angled.

The Law of Sines

Now, draw AD from A which is perpendicular to BC. Clearly, D lies on BC

Now from the triangle ABD, we have,

sin B = AD/AB

⇒ sin B = AD/c, [Since, AB = c]

⇒ AD= c sin B ……………………………………. (1)

Again from the triangle ACD we have,

sin C = AD/AC

⇒ sin C = AD/b, [Since, AC = b]

⇒ AD = b sin C ...………………………………….. (2)

Now, from (1) and (2) we get,

c sin B = b sin C

⇒ b/sin B = c/sin c………………………………….(3)

Similarly, if we draw a perpendicular to AC from B, we will get

a/sin A = c/sin c………………………………….(4)

Therefore, from (3) and (4) we get,

\(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

 

Case II: Obtuse angled triangle (one angle is obtuse): The triangle ABC is obtuse angled.

The Sine Rule

Now, draw AD from A which is perpendicular to produced BC. Clearly, D lies on produced BC.

Now from the triangle ABD, we have,

sin ∠ABD = AD/AB

⇒ sin (180 - B) = AD/c, [Since ∠ABD = 180 - B and AB = c]

⇒ sin B = AD/c, [Since sin (180 - θ) = sin θ]

⇒ AD = c sin B ……………………………………. (5)

Again, from the triangle ACD, we have,

sin C = AD/AC

⇒ sin C = AD/b, [Since, AC = b]

⇒ AD = b sin C ……………………………………. (6)

Now, from (5) and (6) we get,

c sin B = b sin C

b/sin B = c/sin C ……………………………………. (7)

Similarly, if we draw a perpendicular to AC from B, we will get

a/sin A = b/sin B ……………………………………. (8)

Therefore, from (7) and (8) we get,

\(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Case III: Right angled triangle (one angle is right angle): The triangle ABC is right angled. The angle C is a right angle.

Sine Rule

Now from triangle ABC, we have,

sin C = sin π/2

⇒ sin C = 1, [Since, sin π/2 = 1], ……………………………………. (9)

sin A = BC/AB

⇒ sin A = a/c, [Since, BC = a and AB = c]

⇒ c = a/sin A ……………………………………. (10)

and sin B = AC/AB

⇒ sin B = b/c, [Since, AC = b and AB = c]

⇒ c = b/sin B ……………………………………. (11)

Now from (10) and (11) we get,

a/sin A = b/sin B = c

⇒ a/sin A = b/sin B = c/1

Now from (9) we get,

⇒ \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Therefore, from all three cases, we get,

\(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\).                                Proved.

 

Note:

1. The sine rule or the law of sines can be expressed as

\(\frac{sin A}{a}\) = \(\frac{sin B}{b}\) = \(\frac{sin C}{c}\)

2. The sine rule or the law of sines is a very useful rule to express sides of a triangle in terms of the sines of angles and vice-versa in the following manner.

We have \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\) = k\(_{1}\) (say)

⇒ a = k\(_{1}\)  sin A, b = k\(_{1}\)  sin B and c = k\(_{1}\)  sin C

Similarly, sin A/a = sin B/b = sin C/c = k\(_{2}\) (say)

⇒ sin A = k\(_{2}\) a, sin B = k\(_{2}\) b and sin C = k\(_{2}\) c


Solved problem using the law of sines:

The triangle ABC is isosceles; if ∠A = 108°, find the value of a : b.

Solution:

Since the triangle ABC is isosceles and A = 108°, A + B + C = 180°, hence it is evident that B = C.

Now, B + C = 180° - A = 180° - 108°

⇒ 2B = 72° [Since, C = B]

⇒ B = 36°

Again, we have, \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\)

Therefore, \(\frac{a}{b}\) = \(\frac{sin A}{sin B}\) = \(\frac{sin 108°}{sin 36°}\) = \(\frac{cos 18°}{sin 36°}\)

Now, cos 18° = \(\sqrt{1 - sin^{2} 18°}\)

                   = \(\sqrt{1 - (\frac{\sqrt{5} - 1}{4})^{2}}\)

                   = ¼\(\sqrt{10 + 2\sqrt{5}}\)

and sin 36° = \(\sqrt{1 - cos^{2} 36°}\)

                 = \(\sqrt{1 - (\frac{\sqrt{5} + 1}{4})^{2}}\)

                 = ¼\(\sqrt{10 - 2\sqrt{5}}\)

Therefore, a/b = \(\frac{\frac{1}{4}\sqrt{10 + 2\sqrt{5}}}{\frac{1}{4}\sqrt{10 - 2\sqrt{5}}}\)

                    = \(\frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{10 - 2\sqrt{5}}}\)
                  

                    = \(\sqrt{\frac{(10 + 2\sqrt{5})^{2}}{10^{2} - (2\sqrt{5})^{2}}}\)

                    = \(\frac{10 + 2\sqrt{5}}{\sqrt{80}}\)

           ⇒ \(\frac{a}{b}\) = \(\frac{2√5(√5 + 1)}{4 √5}\)

           \(\frac{a}{b}\) = \(\frac{√5 + 1}{2}\)

Therefore, a : b = (√5 + 1) : 2

 Properties of Triangles



11 and 12 Grade Math

From The Law of Sines to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Multiplication of a Number by a 3-Digit Number |3-Digit Multiplication

    Mar 28, 24 09:40 AM

    Multiplying by 3-Digit Number
    In multiplication of a number by a 3-digit number are explained here step by step. Consider the following examples on multiplication of a number by a 3-digit number: 1. Find the product of 36 × 137

    Read More

  2. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  3. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  4. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  5. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Mar 25, 24 04:18 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More