Law of Tangents

We will discuss here about the law of tangents or the tangent rule which is required for solving the problems on triangle.

In any triangle ABC,

(i) tan (\(\frac{B - C}{2}\)) = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\)

(ii) tan (\(\frac{C - A}{2}\))  = (\(\frac{c - a}{c + a}\)) cot \(\frac{B}{2}\)

(iii) tan (\(\frac{A - B}{2}\)) = (\(\frac{a - b}{a + b}\)) cot \(\frac{C}{2}\)

The law of tangents or the tangent rule is also known as Napier’s analogy.

 

Proof of tangent rule or the law of tangents:

In any triangle ABC we have

⇒ \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

⇒ \(\frac{b}{c}\) = \(\frac{sin B}{sin C}\)

 ⇒ (\(\frac{b - c}{b + c}\)) = \(\frac{sin B - sin C}{sin B + sin C}\), [Applying Dividendo and Componendo]

⇒ (\(\frac{b - c}{b + c}\)) = \(\frac{2 cos (\frac{B + C}{2}) sin (\frac{B - C}{2})}{2 sin (\frac{B + C}{2}) cos (\frac{B - C}{2})}\)

⇒ (\(\frac{b - c}{b + c}\)) = cot (\(\frac{B + C}{2}\)) tan (\(\frac{B - C}{2}\))

⇒ (\(\frac{b - c}{b + c}\)) = cot (\(\frac{π}{2}\) - \(\frac{A}{2}\)) tan (\(\frac{B - C}{2}\)), [Since, A + B + C = π ⇒ \(\frac{B + C}{2}\) = \(\frac{π}{2}\) - \(\frac{A}{2}\)]

⇒ (\(\frac{b - c}{b + c}\)) = tan \(\frac{A}{2}\) tan (\(\frac{B - C}{2}\))

⇒ (\(\frac{b - c}{b + c}\)) =  \(\frac{tan \frac{B - C}{2}}{cot \frac{A}{2}}\)

Therefore, tan (\(\frac{B - C}{2}\)) = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\).                        Proved.

Similarly, we can prove that the formulae (ii) tan (\(\frac{C - A}{2}\))  = (\(\frac{c - a}{c + a}\)) cot \(\frac{B}{2}\) and (iii) tan (\(\frac{A - B}{2}\)) = (\(\frac{a - b}{a + b}\))  cot \(\frac{C}{2}\).

 

Alternative Proof law of tangents:

According to the law of sines, in any triangle ABC,                     

      \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Let, \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\) = k

Therefore,

\(\frac{a}{sin A}\) = k, \(\frac{b}{sin B}\) = k and \(\frac{c}{sin C}\) = k

a = k sin A, b = k sin B and c = k sin C ……………………………… (1)

Proof of formula (i) tan (\(\frac{B - C}{2}\)) = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\)

R.H.S. = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\)

= \(\frac{k sin B - k sin C}{k sin B + k sin C }\) cot \(\frac{A}{2}\), [Using (1)]

= (\(\frac{sin B - sin C}{sin B + sin C }\)) cot \(\frac{A}{2}\)

= \(\frac{2 sin (\frac{B - C}{2}) cos (\frac{B + c}{2})}{2 sin (\frac{B + C}{2}) cos (\frac{B - c}{2})}\)

= tan (\(\frac{B - C}{2}\)) cot (\(\frac{B + C}{2}\)) cot \(\frac{A}{2}\)

= tan (\(\frac{B - C}{2}\)) cot (\(\frac{π}{2}\) - \(\frac{A}{2}\)) cot \(\frac{A}{2}\), [Since, A + B + C = π ⇒ \(\frac{B + C}{2}\) = \(\frac{π}{2}\) - \(\frac{A}{2}\)]

= tan (\(\frac{B - C}{2}\)) tan \(\frac{A}{2}\) cot \(\frac{A}{2}\)

= tan (\(\frac{B - C}{2}\)) = L.H.S.

Similarly, formula (ii) and (iii) can be proved.


Solved problem using the law of tangents:

If in the triangle ABC, C = \(\frac{π}{6}\), b = √3 and a = 1 find the other angles and the third side.

Solution: 

Using the formula, tan (\(\frac{A - B}{2}\)) = (\(\frac{a - b}{a + b}\)) cot \(\frac{C}{2}\) we get,

tan \(\frac{A - B}{2}\) = - \(\frac{1 - √3}{1 + √3}\) cot \(\frac{\frac{π}{6}}{2}\)

tan \(\frac{A - B}{2}\) = \(\frac{1 - √3}{1 + √3}\) ∙ cot 15°

tan \(\frac{A - B}{2}\) = -  \(\frac{1 - √3}{1 + √3}\) ∙ cot ( 45° - 30°)

tan \(\frac{A - B}{2}\) = - \(\frac{1 - √3}{1 + √3}\) ∙ \(\frac{cot 45° cot 30° + 1}{cot 45° - cot 30°}\)

tan \(\frac{A - B}{2}\) = - \(\frac{1 - √3}{1 + √3}\) ∙ \(\frac{1 - √3}{1 + √3}\) 

tan \(\frac{A - B}{2}\) = -1

tan \(\frac{A - B}{2}\) = tan (-45°)

Therefore, \(\frac{A - B}{2}\) = - 45°               

             B - A = 90°                            ……………..(1)

Again, A + B + C = 180°                  

Therefore, A + 8 = 180° - 30° = 150° ………………(2)

Now, adding (1) and (2) we get, 2B = 240°

B = 120°

Therefore, A = 150° - 120° = 30°

Again, \(\frac{a}{sin A}\) = \(\frac{c}{sin C}\)

Therefore, \(\frac{1}{sin 30°}\) = \(\frac{c}{sin 30°}\)

c = 1

Therefore, the other angles of the triangle are 120° or, \(\frac{2π}{3}\); 30° or, \(\frac{π}{6}\); and the length of the third side = c = 1 unit.

 Properties of Triangles




11 and 12 Grade Math 

From Law of Tangents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More