Law of Tangents

We will discuss here about the law of tangents or the tangent rule which is required for solving the problems on triangle.

In any triangle ABC,

(i) tan (\(\frac{B - C}{2}\)) = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\)

(ii) tan (\(\frac{C - A}{2}\))  = (\(\frac{c - a}{c + a}\)) cot \(\frac{B}{2}\)

(iii) tan (\(\frac{A - B}{2}\)) = (\(\frac{a - b}{a + b}\)) cot \(\frac{C}{2}\)

The law of tangents or the tangent rule is also known as Napier’s analogy.

 

Proof of tangent rule or the law of tangents:

In any triangle ABC we have

⇒ \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

⇒ \(\frac{b}{c}\) = \(\frac{sin B}{sin C}\)

 ⇒ (\(\frac{b - c}{b + c}\)) = \(\frac{sin B - sin C}{sin B + sin C}\), [Applying Dividendo and Componendo]

⇒ (\(\frac{b - c}{b + c}\)) = \(\frac{2 cos (\frac{B + C}{2}) sin (\frac{B - C}{2})}{2 sin (\frac{B + C}{2}) cos (\frac{B - C}{2})}\)

⇒ (\(\frac{b - c}{b + c}\)) = cot (\(\frac{B + C}{2}\)) tan (\(\frac{B - C}{2}\))

⇒ (\(\frac{b - c}{b + c}\)) = cot (\(\frac{π}{2}\) - \(\frac{A}{2}\)) tan (\(\frac{B - C}{2}\)), [Since, A + B + C = π ⇒ \(\frac{B + C}{2}\) = \(\frac{π}{2}\) - \(\frac{A}{2}\)]

⇒ (\(\frac{b - c}{b + c}\)) = tan \(\frac{A}{2}\) tan (\(\frac{B - C}{2}\))

⇒ (\(\frac{b - c}{b + c}\)) =  \(\frac{tan \frac{B - C}{2}}{cot \frac{A}{2}}\)

Therefore, tan (\(\frac{B - C}{2}\)) = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\).                        Proved.

Similarly, we can prove that the formulae (ii) tan (\(\frac{C - A}{2}\))  = (\(\frac{c - a}{c + a}\)) cot \(\frac{B}{2}\) and (iii) tan (\(\frac{A - B}{2}\)) = (\(\frac{a - b}{a + b}\))  cot \(\frac{C}{2}\).

 

Alternative Proof law of tangents:

According to the law of sines, in any triangle ABC,                     

      \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Let, \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\) = k

Therefore,

\(\frac{a}{sin A}\) = k, \(\frac{b}{sin B}\) = k and \(\frac{c}{sin C}\) = k

a = k sin A, b = k sin B and c = k sin C ……………………………… (1)

Proof of formula (i) tan (\(\frac{B - C}{2}\)) = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\)

R.H.S. = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\)

= \(\frac{k sin B - k sin C}{k sin B + k sin C }\) cot \(\frac{A}{2}\), [Using (1)]

= (\(\frac{sin B - sin C}{sin B + sin C }\)) cot \(\frac{A}{2}\)

= \(\frac{2 sin (\frac{B - C}{2}) cos (\frac{B + c}{2})}{2 sin (\frac{B + C}{2}) cos (\frac{B - c}{2})}\)

= tan (\(\frac{B - C}{2}\)) cot (\(\frac{B + C}{2}\)) cot \(\frac{A}{2}\)

= tan (\(\frac{B - C}{2}\)) cot (\(\frac{π}{2}\) - \(\frac{A}{2}\)) cot \(\frac{A}{2}\), [Since, A + B + C = π ⇒ \(\frac{B + C}{2}\) = \(\frac{π}{2}\) - \(\frac{A}{2}\)]

= tan (\(\frac{B - C}{2}\)) tan \(\frac{A}{2}\) cot \(\frac{A}{2}\)

= tan (\(\frac{B - C}{2}\)) = L.H.S.

Similarly, formula (ii) and (iii) can be proved.


Solved problem using the law of tangents:

If in the triangle ABC, C = \(\frac{π}{6}\), b = √3 and a = 1 find the other angles and the third side.

Solution: 

Using the formula, tan (\(\frac{A - B}{2}\)) = (\(\frac{a - b}{a + b}\)) cot \(\frac{C}{2}\) we get,

tan \(\frac{A - B}{2}\) = - \(\frac{1 - √3}{1 + √3}\) cot \(\frac{\frac{π}{6}}{2}\)

tan \(\frac{A - B}{2}\) = \(\frac{1 - √3}{1 + √3}\) ∙ cot 15°

tan \(\frac{A - B}{2}\) = -  \(\frac{1 - √3}{1 + √3}\) ∙ cot ( 45° - 30°)

tan \(\frac{A - B}{2}\) = - \(\frac{1 - √3}{1 + √3}\) ∙ \(\frac{cot 45° cot 30° + 1}{cot 45° - cot 30°}\)

tan \(\frac{A - B}{2}\) = - \(\frac{1 - √3}{1 + √3}\) ∙ \(\frac{1 - √3}{1 + √3}\) 

tan \(\frac{A - B}{2}\) = -1

tan \(\frac{A - B}{2}\) = tan (-45°)

Therefore, \(\frac{A - B}{2}\) = - 45°               

             B - A = 90°                            ……………..(1)

Again, A + B + C = 180°                  

Therefore, A + 8 = 180° - 30° = 150° ………………(2)

Now, adding (1) and (2) we get, 2B = 240°

B = 120°

Therefore, A = 150° - 120° = 30°

Again, \(\frac{a}{sin A}\) = \(\frac{c}{sin C}\)

Therefore, \(\frac{1}{sin 30°}\) = \(\frac{c}{sin 30°}\)

c = 1

Therefore, the other angles of the triangle are 120° or, \(\frac{2π}{3}\); 30° or, \(\frac{π}{6}\); and the length of the third side = c = 1 unit.

 Properties of Triangles




11 and 12 Grade Math 

From Law of Tangents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Word Problems on Dividing Money | Solving Money Division Word Problems

    Feb 13, 25 10:29 AM

    Word Problems on Dividing Money
    Read the questions given in the word problems on dividing money. We need to understand the statement and divide the amount of money as ordinary numbers with two digit numbers. 1. Ron buys 15 pens for…

    Read More

  2. Addition and Subtraction of Money | Examples | Worksheet With Answers

    Feb 13, 25 09:02 AM

    Add Money Method
    In Addition and Subtraction of Money we will learn how to add money and how to subtract money.

    Read More

  3. Worksheet on Division of Money | Word Problems on Division of Money

    Feb 13, 25 03:53 AM

    Division of Money Worksheet
    Practice the questions given in the worksheet on division of money. This sheet provides different types of questions on dividing the amount of money by a number; finding the quotient

    Read More

  4. Worksheet on Multiplication of Money | Word Problems | Answers

    Feb 13, 25 03:17 AM

    Worksheet on Multiplication of Money
    Practice the questions given in the worksheet on multiplication of money. This sheet provides different types of questions on multiplying the amount of money by a number; arrange in columns the amount…

    Read More

  5. Division of Money | Worked-out Examples | Divide the Amounts of Money

    Feb 13, 25 12:16 AM

    Divide Money
    In division of money we will learn how to divide the amounts of money by a number. We carryout division with money the same way as in decimal numbers. We put decimal point in the quotient after two pl…

    Read More