# Law of Tangents

We will discuss here about the law of tangents or the tangent rule which is required for solving the problems on triangle.

In any triangle ABC,

(i) tan ($$\frac{B - C}{2}$$) = ($$\frac{b - c}{b + c}$$) cot $$\frac{A}{2}$$

(ii) tan ($$\frac{C - A}{2}$$)  = ($$\frac{c - a}{c + a}$$) cot $$\frac{B}{2}$$

(iii) tan ($$\frac{A - B}{2}$$) = ($$\frac{a - b}{a + b}$$) cot $$\frac{C}{2}$$

The law of tangents or the tangent rule is also known as Napier’s analogy.

Proof of tangent rule or the law of tangents:

In any triangle ABC we have

⇒ $$\frac{b}{sin B}$$ = $$\frac{c}{sin C}$$

⇒ $$\frac{b}{c}$$ = $$\frac{sin B}{sin C}$$

⇒ ($$\frac{b - c}{b + c}$$) = $$\frac{sin B - sin C}{sin B + sin C}$$, [Applying Dividendo and Componendo]

⇒ ($$\frac{b - c}{b + c}$$) = $$\frac{2 cos (\frac{B + C}{2}) sin (\frac{B - C}{2})}{2 sin (\frac{B + C}{2}) cos (\frac{B - C}{2})}$$

⇒ ($$\frac{b - c}{b + c}$$) = cot ($$\frac{B + C}{2}$$) tan ($$\frac{B - C}{2}$$)

⇒ ($$\frac{b - c}{b + c}$$) = cot ($$\frac{π}{2}$$ - $$\frac{A}{2}$$) tan ($$\frac{B - C}{2}$$), [Since, A + B + C = π ⇒ $$\frac{B + C}{2}$$ = $$\frac{π}{2}$$ - $$\frac{A}{2}$$]

⇒ ($$\frac{b - c}{b + c}$$) = tan $$\frac{A}{2}$$ tan ($$\frac{B - C}{2}$$)

⇒ ($$\frac{b - c}{b + c}$$) =  $$\frac{tan \frac{B - C}{2}}{cot \frac{A}{2}}$$

Therefore, tan ($$\frac{B - C}{2}$$) = ($$\frac{b - c}{b + c}$$) cot $$\frac{A}{2}$$.                        Proved.

Similarly, we can prove that the formulae (ii) tan ($$\frac{C - A}{2}$$)  = ($$\frac{c - a}{c + a}$$) cot $$\frac{B}{2}$$ and (iii) tan ($$\frac{A - B}{2}$$) = ($$\frac{a - b}{a + b}$$)  cot $$\frac{C}{2}$$.

Alternative Proof law of tangents:

According to the law of sines, in any triangle ABC,

$$\frac{a}{sin A}$$ = $$\frac{b}{sin B}$$ = $$\frac{c}{sin C}$$

Let, $$\frac{a}{sin A}$$ = $$\frac{b}{sin B}$$ = $$\frac{c}{sin C}$$ = k

Therefore,

$$\frac{a}{sin A}$$ = k, $$\frac{b}{sin B}$$ = k and $$\frac{c}{sin C}$$ = k

a = k sin A, b = k sin B and c = k sin C ……………………………… (1)

Proof of formula (i) tan ($$\frac{B - C}{2}$$) = ($$\frac{b - c}{b + c}$$) cot $$\frac{A}{2}$$

R.H.S. = ($$\frac{b - c}{b + c}$$) cot $$\frac{A}{2}$$

= $$\frac{k sin B - k sin C}{k sin B + k sin C }$$ cot $$\frac{A}{2}$$, [Using (1)]

= ($$\frac{sin B - sin C}{sin B + sin C }$$) cot $$\frac{A}{2}$$

= $$\frac{2 sin (\frac{B - C}{2}) cos (\frac{B + c}{2})}{2 sin (\frac{B + C}{2}) cos (\frac{B - c}{2})}$$

= tan ($$\frac{B - C}{2}$$) cot ($$\frac{B + C}{2}$$) cot $$\frac{A}{2}$$

= tan ($$\frac{B - C}{2}$$) cot ($$\frac{π}{2}$$ - $$\frac{A}{2}$$) cot $$\frac{A}{2}$$, [Since, A + B + C = π ⇒ $$\frac{B + C}{2}$$ = $$\frac{π}{2}$$ - $$\frac{A}{2}$$]

= tan ($$\frac{B - C}{2}$$) tan $$\frac{A}{2}$$ cot $$\frac{A}{2}$$

= tan ($$\frac{B - C}{2}$$) = L.H.S.

Similarly, formula (ii) and (iii) can be proved.

Solved problem using the law of tangents:

If in the triangle ABC, C = $$\frac{π}{6}$$, b = √3 and a = 1 find the other angles and the third side.

Solution:

Using the formula, tan ($$\frac{A - B}{2}$$) = ($$\frac{a - b}{a + b}$$) cot $$\frac{C}{2}$$ we get,

tan $$\frac{A - B}{2}$$ = - $$\frac{1 - √3}{1 + √3}$$ cot $$\frac{\frac{π}{6}}{2}$$

tan $$\frac{A - B}{2}$$ = $$\frac{1 - √3}{1 + √3}$$ ∙ cot 15°

tan $$\frac{A - B}{2}$$ = -  $$\frac{1 - √3}{1 + √3}$$ ∙ cot ( 45° - 30°)

tan $$\frac{A - B}{2}$$ = - $$\frac{1 - √3}{1 + √3}$$ ∙ $$\frac{cot 45° cot 30° + 1}{cot 45° - cot 30°}$$

tan $$\frac{A - B}{2}$$ = - $$\frac{1 - √3}{1 + √3}$$ ∙ $$\frac{1 - √3}{1 + √3}$$

tan $$\frac{A - B}{2}$$ = -1

tan $$\frac{A - B}{2}$$ = tan (-45°)

Therefore, $$\frac{A - B}{2}$$ = - 45°

B - A = 90°                            ……………..(1)

Again, A + B + C = 180°

Therefore, A + 8 = 180° - 30° = 150° ………………(2)

Now, adding (1) and (2) we get, 2B = 240°

B = 120°

Therefore, A = 150° - 120° = 30°

Again, $$\frac{a}{sin A}$$ = $$\frac{c}{sin C}$$

Therefore, $$\frac{1}{sin 30°}$$ = $$\frac{c}{sin 30°}$$

c = 1

Therefore, the other angles of the triangle are 120° or, $$\frac{2π}{3}$$; 30° or, $$\frac{π}{6}$$; and the length of the third side = c = 1 unit.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Worksheet on Word Problems on Fractions | Fraction Word Problems | Ans

Jul 16, 24 02:20 AM

In worksheet on word problems on fractions we will solve different types of word problems on multiplication of fractions, word problems on division of fractions etc... 1. How many one-fifths

2. ### Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

Jul 16, 24 01:36 AM

In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

3. ### Worksheet on Add and Subtract Fractions | Word Problems | Fractions

Jul 16, 24 12:17 AM

Recall the topic carefully and practice the questions given in the math worksheet on add and subtract fractions. The question mainly covers addition with the help of a fraction number line, subtractio…

4. ### Comparison of Like Fractions | Comparing Fractions | Like Fractions

Jul 15, 24 03:22 PM

Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example $$\frac{7}{13}$$ > \(\frac{2…