# Sum of the Cubes of First n Natural Numbers

We will discuss here how to find the sum of the cubes of first n natural numbers.

Let us assume the required sum = S

Therefore, S = 1$$^{3}$$ + 2$$^{3}$$ + 3$$^{3}$$ + 4$$^{3}$$ + 5$$^{3}$$ + ................... + n$$^{3}$$

Now, we will use the below identity to find the value of S:

n$$^{4}$$ - (n - 1)$$^{4}$$ = 4n$$^{3}$$ - 6n$$^{2}$$ + 4n - 1

Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get

1$$^{4}$$ - 0$$^{4}$$ = 4 ∙ 1$$^{3}$$ - 6 ∙ 1$$^{2}$$ + 4 ∙ 1 - 1

2$$^{4}$$ - 1$$^{4}$$ = 4 ∙ 2$$^{3}$$ - 6 ∙ 2$$^{2}$$ + 4 ∙ 2 - 1

3$$^{4}$$ - 2$$^{4}$$ = 4 ∙ 3$$^{3}$$ - 6 ∙ 3$$^{2}$$ + 4 ∙ 3 - 1

4$$^{4}$$ - 3$$^{4}$$ = 4 ∙ 4$$^{3}$$ - 6 ∙ 4$$^{2}$$ + 4 ∙ 4 - 1

........ .................... ...............

n$$^{4}$$ - (n - 1)$$^{4}$$ = 4 . n$$^{3}$$ - 6 ∙ n$$^{2}$$ + 4 ∙ n - 1

Adding we get, n$$^{4}$$ - 0$$^{4}$$ = 4(1$$^{3}$$ + 2$$^{3}$$ + 3$$^{3}$$ + 4$$^{3}$$ + ........... + n$$^{3}$$) - 6(1$$^{2}$$ + 2$$^{2}$$ + 3$$^{2}$$ + 4$$^{2}$$ + ........ + n$$^{2}$$) + 4(1 + 2 + 3 + 4 + ........ + n) - (1 + 1 + 1 + 1 + ......... n times)

n$$^{4}$$ = 4S - 6 ∙ $$\frac{n(n + 1)(2n + 1)}{6}$$ + 4 ∙ $$\frac{n(n + 1)}{2}$$ - n

⇒ 4S = n$$^{4}$$ + n(n + 1)(2n + 1) - 2n(n + 1) + n

⇒ 4S = n$$^{4}$$ + n(2n$$^{2}$$ + 3n + 1) – 2n$$^{2}$$ - 2n + n

⇒ 4S = n$$^{4}$$ + 2n$$^{3}$$ + 3n$$^{2}$$ + n - 2n$$^{2}$$ - 2n + n

⇒ 4S = n$$^{4}$$ + 2n$$^{3}$$ + n$$^{2}$$

⇒ 4S = n$$^{2}$$(n$$^{2}$$ + 2n + 1)

⇒ 4S = n$$^{2}$$(n + 1)$$^{2}$$

Therefore, S = $$\frac{n^{2}(n + 1)^{2}}{4}$$ = {$$\frac{n(n + 1)}{2}$$}$$^{2}$$ = (Sum of the first n natural numbers)$$^{2}$$

i.e., 1$$^{3}$$ + 2$$^{3}$$ + 3$$^{3}$$ + 4$$^{3}$$ + 5$$^{3}$$ + ................... + n$$^{3}$$ = {$$\frac{n(n + 1)}{2}$$}$$^{2}$$

Thus, the sum of the cubes of first n natural numbers = {$$\frac{n(n + 1)}{2}$$}$$^{2}$$

Solved examples to find the sum of the cubes of first n natural numbers:

1. Find the sum of the cubes of first 12 natural numbers.

Solution:

Sum of the cubes of first 12 natural numbers

i.e., 1$$^{3}$$ + 2$$^{3}$$ + 3$$^{3}$$ + 4$$^{3}$$ + 5$$^{3}$$ + ................... + 12$$^{3}$$

We know the sum of the cubes of first n natural numbers (S) = {$$\frac{n(n + 1)}{2}$$}$$^{2}$$

Here n = 12

Therefore, the sum of the cubes of first 12 natural numbers = {$$\frac{12(12 + 1)}{2}$$}$$^{2}$$

= {$$\frac{12 × 13}{2}$$}$$^{2}$$

= {6 × 13}$$^{2}$$

= (78)$$^{2}$$

= 6084

2. Find the sum of the cubes of first 25 natural numbers.

Solution:

Sum of the cubes of first 25 natural numbers

i.e., 1$$^{3}$$ + 2$$^{3}$$ + 3$$^{3}$$ + 4$$^{3}$$ + 5$$^{3}$$ + ................... + 25$$^{3}$$

We know the sum of the cubes of first n natural numbers (S) = {$$\frac{n(n + 1)}{2}$$}$$^{2}$$

Here n = 25

Therefore, the sum of the cubes of first 25 natural numbers = {$$\frac{25(25 + 1)}{2}$$}$$^{2}$$

{$$\frac{12 × 26}{2}$$}$$^{2}$$

= {25 × 13}$$^{2}$$

= (325)$$^{2}$$

= 105625

Arithmetic Progression

From Sum of the Cubes of First n Natural Numbers to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

Feb 28, 24 04:07 PM

There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

2. ### Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

Feb 28, 24 01:43 PM

The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

3. ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

Feb 27, 24 02:43 PM

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

4. ### Fraction of a Whole Numbers | Fractional Number |Examples with Picture

Feb 24, 24 04:11 PM

Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…