Subscribe to our YouTube channel for the latest videos, updates, and tips.
We will discuss here how to find the sum of the cubes of first n natural numbers.
Let us assume the required sum = S
Therefore, S = 13 + 23 + 33 + 43 + 53 + ................... + n3
Now, we will use the below identity to find the value of S:
n4 - (n - 1)4 = 4n3 - 6n2 + 4n - 1
Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get
14 - 04 = 4 ∙ 13 - 6 ∙ 12 + 4 ∙ 1 - 1
24 - 14 = 4 ∙ 23 - 6 ∙ 22 + 4 ∙ 2 - 1
34 - 24 = 4 ∙ 33 - 6 ∙ 32 + 4 ∙ 3 - 1
44 - 34 = 4 ∙ 43 - 6 ∙ 42 + 4 ∙ 4 - 1
........ .................... ...............
n4 - (n - 1)4 = 4 . n3 - 6 ∙ n2 + 4 ∙ n - 1
Adding we get, n4 - 04 = 4(13 + 23 + 33 + 43 + ........... + n3) - 6(12 + 22 + 32 + 42 + ........ + n2) + 4(1 + 2 + 3 + 4 + ........ + n) - (1 + 1 + 1 + 1 + ......... n times)
⇒ n4 = 4S - 6 ∙ \(\frac{n(n + 1)(2n + 1)}{6}\) + 4 ∙ n(n+1)2 - n
⇒ 4S = n4 + n(n + 1)(2n + 1) - 2n(n + 1) + n
⇒ 4S = n4 + n(2n2 + 3n + 1) – 2n2 - 2n + n
⇒ 4S = n4 + 2n3 + 3n2 + n - 2n2 - 2n + n
⇒ 4S = n4 + 2n3 + n2
⇒ 4S = n2(n2 + 2n + 1)
⇒ 4S = n2(n + 1)2
Therefore, S = n2(n+1)24 = {n(n+1)2}2 = (Sum of the first n natural numbers)2
i.e., 13 + 23 + 33 + 43 + 53 + ................... + n3 = {n(n+1)2}2
Thus, the sum of the cubes of first n natural numbers = {n(n+1)2}2
Solved examples to find the sum of the cubes of first n natural numbers:
1. Find the sum of the cubes of first 12 natural numbers.
Solution:
Sum of the cubes of first 12 natural numbers
i.e., 13 + 23 + 33 + 43 + 53 + ................... + 123
We know the sum of the cubes of first n natural numbers (S) = {n(n+1)2}2
Here n = 12
Therefore, the sum of the cubes of first 12 natural numbers = {12(12+1)2}2
= {12×132}2
= {6 × 13}2
= (78)2
= 6084
2. Find the sum of the cubes of first 25 natural numbers.
Solution:
Sum of the cubes of first 25 natural numbers
i.e., 13 + 23 + 33 + 43 + 53 + ................... + 253
We know the sum of the cubes of first n natural numbers (S) = {n(n+1)2}2
Here n = 25
Therefore, the sum of the cubes of first 25 natural numbers = {25(25+1)2}2
= {12×262}2
= {25 × 13}2
= (325)2
= 105625
● Arithmetic Progression
From Sum of the Cubes of First n Natural Numbers to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
May 07, 25 01:48 AM
May 07, 25 01:33 AM
May 06, 25 01:23 AM
May 06, 25 12:01 AM
May 05, 25 01:27 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.