Subscribe to our YouTube channel for the latest videos, updates, and tips.


Sum of the Cubes of First n Natural Numbers

We will discuss here how to find the sum of the cubes of first n natural numbers.

Let us assume the required sum = S

Therefore, S = 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + n\(^{3}\)

Now, we will use the below identity to find the value of S:

n\(^{4}\) - (n - 1)\(^{4}\) = 4n\(^{3}\) - 6n\(^{2}\) + 4n - 1

Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get

                    1\(^{4}\) - 0\(^{4}\) = 4 ∙ 1\(^{3}\) - 6 ∙ 1\(^{2}\) + 4 ∙ 1 - 1

                    2\(^{4}\) - 1\(^{4}\) = 4 ∙ 2\(^{3}\) - 6 ∙ 2\(^{2}\) + 4 ∙ 2 - 1

                    3\(^{4}\) - 2\(^{4}\) = 4 ∙ 3\(^{3}\) - 6 ∙ 3\(^{2}\) + 4 ∙ 3 - 1

                    4\(^{4}\) - 3\(^{4}\) = 4 ∙ 4\(^{3}\) - 6 ∙ 4\(^{2}\) + 4 ∙ 4 - 1

                    ........ .................... ...............

             n\(^{4}\) - (n - 1)\(^{4}\) = 4 . n\(^{3}\) - 6 ∙ n\(^{2}\) + 4 ∙ n - 1

                                                                               

Adding we get, n\(^{4}\) - 0\(^{4}\) = 4(1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + ........... + n\(^{3}\)) - 6(1\(^{2}\) + 2\(^{2}\) + 3\(^{2}\) + 4\(^{2}\) + ........ + n\(^{2}\)) + 4(1 + 2 + 3 + 4 + ........ + n) - (1 + 1 + 1 + 1 + ......... n times)

n\(^{4}\) = 4S - 6 ∙ \(\frac{n(n + 1)(2n + 1)}{6}\) + 4 ∙ \(\frac{n(n + 1)}{2}\) - n

⇒ 4S = n\(^{4}\) + n(n + 1)(2n + 1) - 2n(n + 1) + n

⇒ 4S = n\(^{4}\) + n(2n\(^{2}\) + 3n + 1) – 2n\(^{2}\) - 2n + n

⇒ 4S = n\(^{4}\) + 2n\(^{3}\) + 3n\(^{2}\) + n - 2n\(^{2}\) - 2n + n

⇒ 4S = n\(^{4}\) + 2n\(^{3}\) + n\(^{2}\)

⇒ 4S = n\(^{2}\)(n\(^{2}\) + 2n + 1)

⇒ 4S = n\(^{2}\)(n + 1)\(^{2}\)

Therefore, S = \(\frac{n^{2}(n + 1)^{2}}{4}\) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\) = (Sum of the first n natural numbers)\(^{2}\)

i.e., 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + n\(^{3}\) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

Thus, the sum of the cubes of first n natural numbers = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

 

Solved examples to find the sum of the cubes of first n natural numbers:

1. Find the sum of the cubes of first 12 natural numbers.

Solution:

Sum of the cubes of first 12 natural numbers

i.e., 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + 12\(^{3}\)

We know the sum of the cubes of first n natural numbers (S) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

Here n = 12

Therefore, the sum of the cubes of first 12 natural numbers = {\(\frac{12(12 + 1)}{2}\)}\(^{2}\)

= {\(\frac{12 × 13}{2}\)}\(^{2}\)

= {6 × 13}\(^{2}\)

= (78)\(^{2}\)

= 6084

 

2. Find the sum of the cubes of first 25 natural numbers.

Solution:

Sum of the cubes of first 25 natural numbers

i.e., 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + 25\(^{3}\)

We know the sum of the cubes of first n natural numbers (S) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

Here n = 25

Therefore, the sum of the cubes of first 25 natural numbers = {\(\frac{25(25 + 1)}{2}\)}\(^{2}\)

{\(\frac{12 × 26}{2}\)}\(^{2}\)

= {25 × 13}\(^{2}\)

= (325)\(^{2}\)

= 105625

Arithmetic Progression





11 and 12 Grade Math

From Sum of the Cubes of First n Natural Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 20, 25 12:58 PM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  2. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  3. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More

  4. Word Problems on Simple Interest | Simple Interest Formula | Worksheet

    Jun 20, 25 01:12 AM

    Word Problems on Simple Interest are solved here: 1. Robert deposits $ 3000 in State Bank of India for 3 year which earn him an interest of 8%.What is the amount

    Read More

  5. Worksheet on Simple Interest | Word problem on Simple Interest | Free

    Jun 19, 25 02:54 AM

    Worksheet on Simple Interest 2
    In worksheet on simple interest we will get different types of question on calculating the simple interest, the principal amount, the rate of interest and the word problems on simple interest.

    Read More