Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


General Form of an Arithmetic Progress

The general form of an Arithmetic Progress is {a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, ..........}, where ‘a’ is known as the first term of the Arithmetic Progress and ‘d’ is known as the common difference (C.D.).

If a is the first term and d is the common difference of an Arithmetic Progress, then its nth term is a + (n - 1)d.

Let a1, a2, a3, a4, ........, an, .................. be the given Arithmetic Progress. Then a1 = first term = a

By the definition, we have

a2 - a1 = d

⇒ a2 = a1 + d

⇒ a2 = a + d

⇒ a2 = (2 - 1)a + d:

a3 - a2 = d

a3 = a2 + d

a3 = (a + d) + d

a3 = a + 2d

a3 = (3 - 1)a + d:

a4 - a3 = d

a4 = a3 + d

a4 = (a + 2d) + d

a4 = a + 3d

a4 = (4 - 1)a + d:

a5 - a4 = d

a5 = a4 + d

a5 = (a + 3d) + d

a5 = a + 4d

a5 = (5 - 1)a + d:

Similarly, a6 = (6 - 1)a + d:

a7 = (7 - 1)a + d:

an = a + (n - 1)d.

Therefore, nth term of an Arithmetic Progress whose first term = ‘a’ and common difference = ‘d’ is an = a + (n - 1)d.


nth term of an Arithmetic Progress from the end:

Let a and d be the first term and common difference of an Arithmetic Progress respectively having m terms.

Then nth term from the end is (m - n + 1)th term from the beginning.

Therefore, nth term of the end = amn+1 = a + (m - n + 1 - 1)d = a + (m - n)d.

We can also find the general term of an Arithmetic Progress according to the process below.

To find the general term (or the nth term) of the Arithmetic Progress {a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, ..........}.

Clearly, for the Arithmetic Progress is {a, a + d, a + 2d, a + 3d, ..........} we have,

Second term = a + d = a + (2 - 1)d = First term + (2 - 1) × Common Difference.

Third term = a + 2d = a + (3 - 1)d = First term + (3 - 1) × Common Difference.

Fourth term = a + 3d = a + (4 - 1)d = First term + (4 - 1) × Common Difference.

Fifth term = a + 4d = a + (5 - 1)d = First term + (5 - 1) × Common Difference.

Therefore, in general, we have,

nth term = First + (n - 1) × Common Difference = a + (n - 1) × d.

Hence, if the nth term of the Arithmetic Progress {a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, ..........} be denoted by tn, then tn = a + (n - 1) × d.

Solved examples on general form of an Arithmetic Progress

1. Show that the sequence 3, 5, 7, 9, 11, ......... is an Arithmetic Progress. Find its 15th term and the general term.

Solution:

First term of the given sequence = 3

Second term of the given sequence = 5

Third term of the given sequence = 7

Fourth term of the given sequence = 9

Fifth term of the given sequence = 11

Now, Second term - First term = 5 - 3 = 2

Third term - Second term = 7 - 5 = 2

Fourth term - Third term = 9 - 7 = 2

Therefore, the given sequence is an Arithmetic Progress with the common difference 2.

We know that nth term of an Arithmetic Progress, whose first term is a and common difference is d is tn = a + (n - 1) × d.

Therefore, 15th term of the Arithmetic Progress = t15 = 3 + (15 - 1) × 2 = 3 + 14 × 2 = 3 + 28 = 31.

General term = nth term = an = a + (n - 1)d = 3 + (n - 1) × 2 = 3 + 2n - 2 = 2n + 1


2. Which term of the sequence 6, 11, 16, 21, 26, ....... is 126?

Solution:

First term of the given sequence = 6

Second term of the given sequence = 11

Third term of the given sequence = 16

Fourth term of the given sequence = 21

Fifth term of the given sequence = 26

Now, Second term - First term = 11 - 6 = 5

Third term - Second term = 16 - 11 = 5

Fourth term - Third term = 21 - 16 = 5

Therefore, the given sequence is an Arithmetic Progress with the common difference 5.

Let 126 is the nth term of the given sequence. Then,

an = 126

⇒ a + (n - 1)d = 126

⇒ 6 + (n - 1) × 5 = 126

⇒ 6 + 5n - 5 = 126

⇒ 5n + 1 = 126

⇒ 5n = 126 - 1

⇒ 5n = 125

⇒ n = 25

Hence, 25th term of the given sequence is 126.


3. Find the seventeenth term of the Arithmetic Progress {31, 25, 19, 13, ..................... }.

Solution:

The given Arithmetic Progress is {31, 25, 19, 13, ..................... }.

First term of the given sequence = 31

Second term of the given sequence = 25

Third term of the given sequence = 19

Fourth term of the given sequence = 13

Now, Second term - First term = 25 - 31 = -6

Third term - Second term = 19 - 25 = -6

Fourth term - Third term = 13 - 19 = -6

Therefore, common difference of the given sequence = -6.

Thus, the 17th term of the given Arithmetic Progress = a + (n -1)d = 31 + (17 - 1) × (-6) = 31 + 16 × (-6) = 31 - 96 = -65.


Note: Any term of an Arithmetic Progress can be obtained if its first term and common difference are given.

Arithmetic Progression




11 and 12 Grade Math

From General Form of an Arithmetic Progress to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More