Arithmetic Progression

An arithmetic progression is a sequence of numbers in which the consecutive terms (beginning with the second term) are formed by adding a constant quantity with the preceding term.

Definition of Arithmetic Progression: A sequence of numbers is known as an arithmetic progression (A.P.) if the difference of the term and the preceding term is always same or constant.

The constant quantity stated in the above definition is called the common difference of the progression. The constant difference, generally denoted by d is called common difference.

a\(_{n + 1}\) - a\(_{n}\) = constant (=d) for all n∈ N

From the definition, it is clear that an arithmetic progression is a sequence of numbers in which the difference between any two consecutive terms is constant. 

Examples on Arithmetic Progression:

1. -2, 1, 4, 7, 10 ……………. is an A.P. whose first term is -2 and common difference is 1 - (-2) = 1 + 2 = 3.


2. The sequence {3, 7, 11, 15, 19, 23, 27, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (7) = First term (3) + 4

Third term (11) = Second term (7) + 4

Fourth term (15) = Third term (11) + 4

Fifth term (19) = Fourth term (15) + 4 etc.

 

3. The sequence {58, 43, 28, 13, -2, -17, -32, …………………} is an Arithmetic Progression whose common difference is -15, since

Second term (43) = First term (58) + (-15)

Third term (28) = Second term (43) + (-15)

Fourth term (13) = Third term (28) + (-15)

Fifth term (-2) = Fourth term (13) + (-15) etc.

 

4. The sequence {11, 23, 35, 47, 59, 71, 83, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (23) = First term (11) + 12

Third term (35) = Second term (23) + 12

Fourth term (47) = Third term (35) + 12

Fifth term (59) = Fourth term (47) + 12 etc.

 

Algorithm to determine whether a sequence is an Arithmetic Progression or not when its nth term is given:

Step I: Obtain a\(_{n}\)

Step II: Replace n by n + 1 in a\(_{n}\) to get a\(_{n + 1}\).

Step III: calculate a\(_{n + 1}\) - a\(_{n}\).

When a\(_{n + 1}\) is independent of n then, the given sequence is an Arithmetic Progression. And, when a\(_{n + 1}\) is not independent of n then, the given sequence is not an Arithmetic Progression.


The following examples illustrate the above concept:

1. Show that the sequence < a\(_{n}\)> defined by a\(_{n}\) = 2n + 3 is an Arithmetic Progression. Also fine the common difference.

Solution:

The given sequence a\(_{n}\) = 2n + 3

Replacing n by (n + 1), we get

a\(_{n + 1}\) = 2(n + 1) + 3

a\(_{n + 1}\) = 2n + 2 + 3

a\(_{n + 1}\) = 2n + 5

Now, a\(_{n + 1}\) - a\(_{n}\) = (2n + 5) - (2n + 3) = 2n + 5 - 2n - 3 = 2

Hence, a\(_{n + 1}\) - a\(_{n}\) is independent of n, which is equal to 2. 

Therefore, the given sequence a\(_{n}\) = 2n + 3 is an Arithmetic Progression with common difference 2.

 

2. Show that the sequence < a\(_{n}\)> defined by a\(_{n}\) = 3n\(^{2}\) + 2 is not an Arithmetic Progression.

Solution:

The given sequence a\(_{n}\) = 3n\(^{2}\) + 2

Replacing n by (n + 1), we get

a\(_{n + 1}\) = 3(n + 1)\(^{2}\) + 2

a\(_{n + 1}\) = 3(n\(^{2}\) + 2n + 1) + 2

a\(_{n + 1}\) = 3n\(^{2}\) + 6n + 3 + 2

a\(_{n + 1}\) = 3n\(^{2}\) + 6n + 5

Now, a\(_{n + 1}\) - a\(_{n}\) = (3n\(^{2}\) + 6n + 5) - (3n\(^{2}\) + 2) = 3n\(^{2}\) + 6n + 5 - 3n\(^{2}\) - 2 = 6n + 3

Therefore, a\(_{n + 1}\) - a\(_{n}\) is not independent of n.

Hence a\(_{n + 1}\) - a\(_{n}\) is not constant.

Thus, the given sequence a\(_{n}\) = 3n\(^{2}\) + 2 is not an Arithmetic Progression.


Note: To obtain the common difference of a given arithmetic progression we required to subtract its any term from that which follow it. That is,

Common Difference = Any term - Its preceding term.

Arithmetic Progression




11 and 12 Grade Math

From Definition of Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  2. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  3. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  4. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  5. Worksheets on Comparison of Numbers | Find the Greatest Number

    May 19, 24 10:42 AM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More