Arithmetic Progression

An arithmetic progression is a sequence of numbers in which the consecutive terms (beginning with the second term) are formed by adding a constant quantity with the preceding term.

Definition of Arithmetic Progression: A sequence of numbers is known as an arithmetic progression (A.P.) if the difference of the term and the preceding term is always same or constant.

The constant quantity stated in the above definition is called the common difference of the progression. The constant difference, generally denoted by d is called common difference.

a\(_{n + 1}\) - a\(_{n}\) = constant (=d) for all n∈ N

From the definition, it is clear that an arithmetic progression is a sequence of numbers in which the difference between any two consecutive terms is constant. 

Examples on Arithmetic Progression:

1. -2, 1, 4, 7, 10 ……………. is an A.P. whose first term is -2 and common difference is 1 - (-2) = 1 + 2 = 3.


2. The sequence {3, 7, 11, 15, 19, 23, 27, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (7) = First term (3) + 4

Third term (11) = Second term (7) + 4

Fourth term (15) = Third term (11) + 4

Fifth term (19) = Fourth term (15) + 4 etc.

 

3. The sequence {58, 43, 28, 13, -2, -17, -32, …………………} is an Arithmetic Progression whose common difference is -15, since

Second term (43) = First term (58) + (-15)

Third term (28) = Second term (43) + (-15)

Fourth term (13) = Third term (28) + (-15)

Fifth term (-2) = Fourth term (13) + (-15) etc.

 

4. The sequence {11, 23, 35, 47, 59, 71, 83, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (23) = First term (11) + 12

Third term (35) = Second term (23) + 12

Fourth term (47) = Third term (35) + 12

Fifth term (59) = Fourth term (47) + 12 etc.

 

Algorithm to determine whether a sequence is an Arithmetic Progression or not when its nth term is given:

Step I: Obtain a\(_{n}\)

Step II: Replace n by n + 1 in a\(_{n}\) to get a\(_{n + 1}\).

Step III: calculate a\(_{n + 1}\) - a\(_{n}\).

When a\(_{n + 1}\) is independent of n then, the given sequence is an Arithmetic Progression. And, when a\(_{n + 1}\) is not independent of n then, the given sequence is not an Arithmetic Progression.


The following examples illustrate the above concept:

1. Show that the sequence < a\(_{n}\)> defined by a\(_{n}\) = 2n + 3 is an Arithmetic Progression. Also fine the common difference.

Solution:

The given sequence a\(_{n}\) = 2n + 3

Replacing n by (n + 1), we get

a\(_{n + 1}\) = 2(n + 1) + 3

a\(_{n + 1}\) = 2n + 2 + 3

a\(_{n + 1}\) = 2n + 5

Now, a\(_{n + 1}\) - a\(_{n}\) = (2n + 5) - (2n + 3) = 2n + 5 - 2n - 3 = 2

Hence, a\(_{n + 1}\) - a\(_{n}\) is independent of n, which is equal to 2. 

Therefore, the given sequence a\(_{n}\) = 2n + 3 is an Arithmetic Progression with common difference 2.

 

2. Show that the sequence < a\(_{n}\)> defined by a\(_{n}\) = 3n\(^{2}\) + 2 is not an Arithmetic Progression.

Solution:

The given sequence a\(_{n}\) = 3n\(^{2}\) + 2

Replacing n by (n + 1), we get

a\(_{n + 1}\) = 3(n + 1)\(^{2}\) + 2

a\(_{n + 1}\) = 3(n\(^{2}\) + 2n + 1) + 2

a\(_{n + 1}\) = 3n\(^{2}\) + 6n + 3 + 2

a\(_{n + 1}\) = 3n\(^{2}\) + 6n + 5

Now, a\(_{n + 1}\) - a\(_{n}\) = (3n\(^{2}\) + 6n + 5) - (3n\(^{2}\) + 2) = 3n\(^{2}\) + 6n + 5 - 3n\(^{2}\) - 2 = 6n + 3

Therefore, a\(_{n + 1}\) - a\(_{n}\) is not independent of n.

Hence a\(_{n + 1}\) - a\(_{n}\) is not constant.

Thus, the given sequence a\(_{n}\) = 3n\(^{2}\) + 2 is not an Arithmetic Progression.


Note: To obtain the common difference of a given arithmetic progression we required to subtract its any term from that which follow it. That is,

Common Difference = Any term - Its preceding term.

Arithmetic Progression




11 and 12 Grade Math

From Definition of Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More