Arithmetic Progression

An arithmetic progression is a sequence of numbers in which the consecutive terms (beginning with the second term) are formed by adding a constant quantity with the preceding term.

Definition of Arithmetic Progression: A sequence of numbers is known as an arithmetic progression (A.P.) if the difference of the term and the preceding term is always same or constant.

The constant quantity stated in the above definition is called the common difference of the progression. The constant difference, generally denoted by d is called common difference.

a\(_{n + 1}\) - a\(_{n}\) = constant (=d) for all n∈ N

From the definition, it is clear that an arithmetic progression is a sequence of numbers in which the difference between any two consecutive terms is constant. 

Examples on Arithmetic Progression:

1. -2, 1, 4, 7, 10 ……………. is an A.P. whose first term is -2 and common difference is 1 - (-2) = 1 + 2 = 3.


2. The sequence {3, 7, 11, 15, 19, 23, 27, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (7) = First term (3) + 4

Third term (11) = Second term (7) + 4

Fourth term (15) = Third term (11) + 4

Fifth term (19) = Fourth term (15) + 4 etc.

 

3. The sequence {58, 43, 28, 13, -2, -17, -32, …………………} is an Arithmetic Progression whose common difference is -15, since

Second term (43) = First term (58) + (-15)

Third term (28) = Second term (43) + (-15)

Fourth term (13) = Third term (28) + (-15)

Fifth term (-2) = Fourth term (13) + (-15) etc.

 

4. The sequence {11, 23, 35, 47, 59, 71, 83, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (23) = First term (11) + 12

Third term (35) = Second term (23) + 12

Fourth term (47) = Third term (35) + 12

Fifth term (59) = Fourth term (47) + 12 etc.

 

Algorithm to determine whether a sequence is an Arithmetic Progression or not when its nth term is given:

Step I: Obtain a\(_{n}\)

Step II: Replace n by n + 1 in a\(_{n}\) to get a\(_{n + 1}\).

Step III: calculate a\(_{n + 1}\) - a\(_{n}\).

When a\(_{n + 1}\) is independent of n then, the given sequence is an Arithmetic Progression. And, when a\(_{n + 1}\) is not independent of n then, the given sequence is not an Arithmetic Progression.


The following examples illustrate the above concept:

1. Show that the sequence < a\(_{n}\)> defined by a\(_{n}\) = 2n + 3 is an Arithmetic Progression. Also fine the common difference.

Solution:

The given sequence a\(_{n}\) = 2n + 3

Replacing n by (n + 1), we get

a\(_{n + 1}\) = 2(n + 1) + 3

a\(_{n + 1}\) = 2n + 2 + 3

a\(_{n + 1}\) = 2n + 5

Now, a\(_{n + 1}\) - a\(_{n}\) = (2n + 5) - (2n + 3) = 2n + 5 - 2n - 3 = 2

Hence, a\(_{n + 1}\) - a\(_{n}\) is independent of n, which is equal to 2. 

Therefore, the given sequence a\(_{n}\) = 2n + 3 is an Arithmetic Progression with common difference 2.

 

2. Show that the sequence < a\(_{n}\)> defined by a\(_{n}\) = 3n\(^{2}\) + 2 is not an Arithmetic Progression.

Solution:

The given sequence a\(_{n}\) = 3n\(^{2}\) + 2

Replacing n by (n + 1), we get

a\(_{n + 1}\) = 3(n + 1)\(^{2}\) + 2

a\(_{n + 1}\) = 3(n\(^{2}\) + 2n + 1) + 2

a\(_{n + 1}\) = 3n\(^{2}\) + 6n + 3 + 2

a\(_{n + 1}\) = 3n\(^{2}\) + 6n + 5

Now, a\(_{n + 1}\) - a\(_{n}\) = (3n\(^{2}\) + 6n + 5) - (3n\(^{2}\) + 2) = 3n\(^{2}\) + 6n + 5 - 3n\(^{2}\) - 2 = 6n + 3

Therefore, a\(_{n + 1}\) - a\(_{n}\) is not independent of n.

Hence a\(_{n + 1}\) - a\(_{n}\) is not constant.

Thus, the given sequence a\(_{n}\) = 3n\(^{2}\) + 2 is not an Arithmetic Progression.


Note: To obtain the common difference of a given arithmetic progression we required to subtract its any term from that which follow it. That is,

Common Difference = Any term - Its preceding term.

Arithmetic Progression




11 and 12 Grade Math

From Definition of Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 17, 25 01:54 PM

    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  5. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More