Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Problems on Sum of 'n' Terms of Arithmetic Progression

Here we will learn how to solve different types of problems on sum of n terms of Arithmetic Progression.

1. Find the sum of the first 35 terms of an Arithmetic Progression whose third term is 7 and seventh term is two more than thrice of its third term.

Solution:

Let us assume that ‘a’ be the first term and ‘d’ be the common difference of the given Arithmetic Progression.

According to the problem,

3rd term of an Arithmetic Progression is 7

i.e., 3th term = 7

⇒ a + (3 - 1)d = 7

⇒ a + 2d = 7 ................... (i)

and seventh term is two more than thrice of its third term.

i.e., 7th term = 3 × 3rd term + 2

⇒ a + (7 - 1)d = 3 × [a + (3 - 1)d] + 2

⇒ a + 6d = 3 × [a + 2d] + 2

Substitute the value of a + 2d = 7 we get,

⇒ a + 6d = 3 × 7 + 2

⇒ a + 6d = 21 + 2

⇒ a + 6d = 23 ................... (ii)

Now, subtract the equation (i) from (ii) we get,

4d = 16

⇒ d = 164

⇒ d = 4

Substitute the value of d = 4 in the equation (i) we get,

⇒ a + 2 × 4 = 7

⇒ a + 8 = 7

⇒ a = 7 - 8

⇒ a = -1

Therefore, the first term of the Arithmetic Progression is -1 and common difference of the Arithmetic Progression is 4.

Now, sum of the first 35 terms of an Arithmetic Progression S35 = 352[2 × (-1) + (35 - 1) × 4], [Using the Sum of the First n Terms of an Arithmetic Progression Sn = n2[2a + (n - 1)d]

352[-2 + 34 × 4]

352[-2 + 136]

352[134]

= 35 × 67

= 2345.

 

2. If the 5th term and 12th term of an Arithmetic Progression are 30 and 65 respectively, find the sum of its 26 terms.

Solution:

 Let us assume that ‘a’ be the first term and ‘d’ be the common difference of the given Arithmetic Progression.

According to the problem,

5th term of an Arithmetic Progression is 30

i.e., 5th term = 30

⇒ a + (5 - 1)d = 30

⇒ a + 4d = 30 ................... (i)

and 12th term of an Arithmetic Progression is 65

i.e., 12th term = 65

⇒ a + (12 - 1)d = 65

⇒ a + 11d = 65 .................... (ii)

Now, subtract the equation (i) from (ii) we get,

7d = 35

⇒ d = 357

⇒ d = 5

Substitute the value of d = 5 in the equation (i) we get,

a + 4 × 5 = 30

⇒ a + 20 = 30

⇒ a = 30 - 20

⇒ a = 10

Therefore, the first term of the Arithmetic Progression is 10 and common difference of the Arithmetic Progression is 5.

Now, sum of the first 26 terms of an Arithmetic Progression S26 = 262[2 × 10 + (26 - 1) × 5], [Using the Sum of the First n Terms of an Arithmetic Progression Sn n2[2a + (n - 1)d]

= 13[20 + 25 × 5]

= 13[20 + 125]

= 13[145]

= 1885

Arithmetic Progression




11 and 12 Grade Math 

From Problems on Sum of 'n' Terms of Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More