Problems on Sum of 'n' Terms of Arithmetic Progression

Here we will learn how to solve different types of problems on sum of n terms of Arithmetic Progression.

1. Find the sum of the first 35 terms of an Arithmetic Progression whose third term is 7 and seventh term is two more than thrice of its third term.

Solution:

Let us assume that ‘a’ be the first term and ‘d’ be the common difference of the given Arithmetic Progression.

According to the problem,

3rd term of an Arithmetic Progression is 7

i.e., 3th term = 7

⇒ a + (3 - 1)d = 7

⇒ a + 2d = 7 ................... (i)

and seventh term is two more than thrice of its third term.

i.e., 7th term = 3 × 3rd term + 2

⇒ a + (7 - 1)d = 3 × [a + (3 - 1)d] + 2

⇒ a + 6d = 3 × [a + 2d] + 2

Substitute the value of a + 2d = 7 we get,

⇒ a + 6d = 3 × 7 + 2

⇒ a + 6d = 21 + 2

⇒ a + 6d = 23 ................... (ii)

Now, subtract the equation (i) from (ii) we get,

4d = 16

⇒ d = \(\frac{16}{4}\)

⇒ d = 4

Substitute the value of d = 4 in the equation (i) we get,

⇒ a + 2 × 4 = 7

⇒ a + 8 = 7

⇒ a = 7 - 8

⇒ a = -1

Therefore, the first term of the Arithmetic Progression is -1 and common difference of the Arithmetic Progression is 4.

Now, sum of the first 35 terms of an Arithmetic Progression S\(_{35}\) = \(\frac{35}{2}\)[2 × (-1) + (35 - 1) × 4], [Using the Sum of the First n Terms of an Arithmetic Progression S\(_{n}\) = \(\frac{n}{2}\)[2a + (n - 1)d]

\(\frac{35}{2}\)[-2 + 34 × 4]

\(\frac{35}{2}\)[-2 + 136]

\(\frac{35}{2}\)[134]

= 35 × 67

= 2345.

 

2. If the 5th term and 12th term of an Arithmetic Progression are 30 and 65 respectively, find the sum of its 26 terms.

Solution:

 Let us assume that ‘a’ be the first term and ‘d’ be the common difference of the given Arithmetic Progression.

According to the problem,

5th term of an Arithmetic Progression is 30

i.e., 5th term = 30

⇒ a + (5 - 1)d = 30

⇒ a + 4d = 30 ................... (i)

and 12th term of an Arithmetic Progression is 65

i.e., 12th term = 65

⇒ a + (12 - 1)d = 65

⇒ a + 11d = 65 .................... (ii)

Now, subtract the equation (i) from (ii) we get,

7d = 35

⇒ d = \(\frac{35}{7}\)

⇒ d = 5

Substitute the value of d = 5 in the equation (i) we get,

a + 4 × 5 = 30

⇒ a + 20 = 30

⇒ a = 30 - 20

⇒ a = 10

Therefore, the first term of the Arithmetic Progression is 10 and common difference of the Arithmetic Progression is 5.

Now, sum of the first 26 terms of an Arithmetic Progression S\(_{26}\) = \(\frac{26}{2}\)[2 × 10 + (26 - 1) × 5], [Using the Sum of the First n Terms of an Arithmetic Progression S\(_{n}\) \(\frac{n}{2}\)[2a + (n - 1)d]

= 13[20 + 25 × 5]

= 13[20 + 125]

= 13[145]

= 1885

Arithmetic Progression




11 and 12 Grade Math 

From Problems on Sum of 'n' Terms of Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 15, 24 09:25 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More