Sum of the First n Terms of an Arithmetic Progression

We will learn how to find the sum of first n terms of an Arithmetic Progression.

Prove that the sum Sn of n terms of an Arithmetic Progress (A.P.) whose first term ‘a’ and common difference ‘d’ is

S = n2[2a + (n - 1)d]

Or, S = n2[a + l], where l = last term = a + (n - 1)d

Proof:

Suppose, a1, a2, a3, ……….. be an  Arithmetic Progression whose first term is a and common difference is d.

Then,

a1 = a

a2 = a + d

a3 = a + 2d

a4 = a + 3d

………..

………..

an = a + (n - 1)d

Now,

S = a1 + a2 + a3 + ………….. + an1 + an

S = a + (a + d) + (a + 2d) + (a + 3d) + ……….. + {a + (n - 2)d} + {a + (n - 1)d} ……………….. (i)

By writing the terms of S in the reverse order, we get,

S = {a + (n - 1)d} + {a + (n - 2)d} + {a + (n - 3)d} + ……….. + (a + 3d) + (a + 2d) + (a + d) + a

Adding the corresponding terms of (i) and (ii), we get

2S = {2a + (n - 1)d} + {2a + (n - 1)d} + {2a + (n - 1)d} + ………. + {a + (n - 2)d}

2S = n[2a + (n -1)d

S = n2[2a + (n - 1)d]

Now, l = last term = nth term = a + (n - 1)d

Therefore, S = n2[2a + (n - 1)d] = n2[a {a + (n - 1)d}] = n2[a + l].

 

We can also find find the sum of first n terms of an Arithmetic Progression according to the process below.

Suppose, S denote the sum of the first n terms of the Arithmetic Progression {a, a + d, a + 2d, a + 3d, a + 4d, a + 5d ……………...}.

Now nth term of the given Arithmetic Progression is a + (n - 1)d

Let the nth term of the given Arithmetic Progression = l

Therefore, a + (n - 1)d = l

Hence, the term preceding the last term is l – d.

The term preceding the term (l - d) is l - 2d and so on.

Therefore, S = a + (a + d) + (a + 2d) + (a + 3d) + …………………….. to n tems

Or, S = a + (a + d) + (a + 2d) + (a + 3d) + …………………….. + (l - 2d) + (l - d) + l ……………… (i)

Writing the above series in reverse order, we get

S = l + (l - d) + (l - 2d) + ……………. + (a + 2d) + (a + d) + a………………(ii) 

Adding the corresponding terms of (i) and (ii), we get

2S = (a + l) + (a + l) + (a + l) + ……………………. to n terms

2S = n(a + l)

S = n2(a + l)

⇒ S = Numberofterms2 × (First term + Last term) …………(iii)

⇒ S = n2[a + a + (n - 1)d], Since last term l = a + (n - 1)d

⇒ S = n2[2a + (n - 1)d]

Solved examples to find the sum of first n terms of an Arithmetic Progression:

1. Find the sum of the following Arithmetic series:

1 + 8 + 15 + 22 + 29 + 36 + ………………… to 17 terms

Solution:

First term of the given arithmetic series = 1

Second term of the given arithmetic series = 8

Third term of the given arithmetic series = 15

Fourth term of the given arithmetic series = 22

Fifth term of the given arithmetic series = 29

Now, Second term - First term = 8 - 1 = 7

Third term - Second term = 15 - 8 = 7

Fourth term - Third term = 22 - 15 = 7

Therefore, common difference of the given arithmetic series is 7.

The number of terms of the given A. P. series (n) = 17

We know that the sum of first n terms of the Arithmetic Progress, whose first term = a and common difference = d is

S = n2[2a + (n - 1)d]

Therefore, the required sum of first 20 terms of the series = 172[2 ∙ 1 + (17 - 1) ∙ 7]

172[2 + 16 ∙ 7]

172[2 + 112]

172 × 114

= 17 × 57

= 969

 

2. Find the sum of the series: 7 + 15 + 23 + 31 + 39 + 47 + ……….. + 255

Solution:

First term of the given arithmetic series = 7

Second term of the given arithmetic series = 15

Third term of the given arithmetic series = 23

Fourth term of the given arithmetic series = 31

Fifth term of the given arithmetic series = 39

Now, Second term - First term = 15 - 7 = 8

Third term - Second term = 23 - 15 = 8

Fourth term - Third term = 31 - 23 = 8

Therefore, the given sequence is an arithmetic series with the common difference 8.

Let there be n terms in the given arithmetic series. Then

an = 255

⇒ a + (n - 1)d = 255

⇒ 7 + (n - 1) × 8 = 255

⇒ 7 + 8n - 8 = 255

⇒ 8n - 1 = 255

⇒ 8n = 256

⇒ n = 32

Therefore, the required sum of the series = 322[2 ∙ 7 + (32 - 1) ∙ 8]

= 16 [14 + 31 ∙ 8]

= 16 [14 + 248]

= 16 × 262

= 4192

 

Note:

1. We know the formula to find the sum of first n terms of an Arithmetic Progression is S = n2[2a + (n - 1)d]. In the formula there are four quantities. They are S, a, n and d. If any three quantities  are known, the fourth quantity can be determined.

Suppose when two quantities are given then, the remaining two quantities are provided by some other relation.

2. When the sum Sn of n terms of an Arithmetic Progression is given, then the nth term a_n of the Arithmetic Progression cann be determined by the formula an = Sn - Sn1.

Arithmetic Progression






11 and 12 Grade Math

From Sum of the First n Terms of an Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  2. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  5. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More