# Problems on Arithmetic Progression

Here we will learn how to solve different types of problems on arithmetic progression.

1. Show that the sequence 7, 11, 15, 19, 23, .........  is an Arithmetic Progression. Find its 27th term and the general term.

Solution:

First term of the given sequence = 7

Second term of the given sequence = 11

Third term of the given sequence = 15

Fourth term of the given sequence = 19

Fifth term of the given sequence = 23

Now, Second term - First term = 11 - 7 = 4

Third term - Second term = 15 - 11 = 4

Fourth term - Third term = 19 - 15 = 4

Fifth term – Fourth term = 23 - 19 = 4

Therefore, the given sequence is an Arithmetic Progress with the common difference 4.

We know that nth term of an Arithmetic Progress, whose first term is a and common difference is d is tn = a + (n - 1) × d.

Therefore, 27th term of the Arithmetic Progress = t27 = 7 + (27 - 1) × 4 = 7 + 26 × 4 = 7 + 104 = 111.

General term = nth term = an = a + (n - 1)d = 7 + (n - 1) × 4 = 7 + 4n - 4 = 4n + 3

2. The 5th term of an Arithmetic Progression is 16 and 13th term of an Arithmetic Progression is 28. Find the first term and common difference of the Arithmetic Progression.

Solution:

Let us assume that ‘a’ be the first term and ‘d’ be the common difference of the required Arithmetic Progression.

According to the problem,

5th term of an Arithmetic Progression is 16

i.e., 5th term = 16

⇒ a + (5 - 1)d = 16

⇒ a + 4d = 16 ................... (i)

and 13th term of an Arithmetic Progression is 28

i.e., 13th term = 28

⇒ a + (13 - 1)d = 28

⇒ a + 12d = 28 .................... (ii)

Now, subtract the equation (i) from (ii) we get,

8d = 12

⇒ d = $$\frac{12}{8}$$

⇒ d = $$\frac{3}{2}$$

Substitute the value of d = $$\frac{3}{2}$$ in the equation (i) we get,

⇒ a + 4 × $$\frac{3}{2}$$ = 16

⇒ a + 6 = 16

⇒ a = 16 - 6

⇒ a = 10

Therefore, the first term of the Arithmetic Progression is 10 and common difference of the Arithmetic Progression is $$\frac{3}{2}$$.

Arithmetic Progression

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

Sep 13, 24 02:48 AM

What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

2. ### Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

Sep 13, 24 02:23 AM

Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

3. ### 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

Sep 13, 24 01:20 AM

The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

4. ### Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

Sep 12, 24 03:07 PM

What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers