Here we will learn how to solve different types of problems on arithmetic progression.

**1.** Show that the sequence 7, 11, 15, 19, 23, ......... is an Arithmetic Progression. Find its 27th term and the general term.

**Solution:**

First term of the given sequence = 7

Second term of the given sequence = 11

Third term of the given sequence = 15

Fourth term of the given sequence = 19

Fifth term of the given sequence = 23

Now, Second term - First term = 11 - 7 = 4

Third term - Second term = 15 - 11 = 4

Fourth term - Third term = 19 - 15 = 4

Fifth term – Fourth term = 23 - 19 = 4

Therefore, the given sequence is an Arithmetic Progress with the common difference 4.

We know that nth term of an Arithmetic Progress, whose first term is a and common difference is d is tn = a + (n - 1) × d.

Therefore, 27th term of the Arithmetic Progress = t27 = 7 + (27 - 1) × 4 = 7 + 26 × 4 = 7 + 104 = 111.

General term = nth term = an = a + (n - 1)d = 7 + (n - 1) × 4 = 7 + 4n - 4 = 4n + 3

**2.** The 5th term of an Arithmetic Progression is 16 and 13th
term of an Arithmetic Progression is 28. Find the first term and common
difference of the Arithmetic Progression.

**Solution:**

Let us assume that ‘a’ be the first term and ‘d’ be the common difference of the required Arithmetic Progression.

According to the problem,

5th term of an Arithmetic Progression is 16

i.e., 5th term = 16

⇒ a + (5 - 1)d = 16

⇒ a + 4d = 16 ................... (i)

and 13th term of an Arithmetic Progression is 28

i.e., 13th term = 28

⇒ a + (13 - 1)d = 28

⇒ a + 12d = 28 .................... (ii)

Now, subtract the equation (i) from (ii) we get,

8d = 12

⇒ d = \(\frac{12}{8}\)

⇒ d = \(\frac{3}{2}\)

Substitute the value of d = \(\frac{3}{2}\) in the equation (i) we get,

⇒ a + 4 × \(\frac{3}{2}\) = 16

⇒ a + 6 = 16

⇒ a = 16 - 6

⇒ a = 10

Therefore, the first term of the Arithmetic Progression is 10 and common difference of the Arithmetic Progression is \(\frac{3}{2}\).

**●** **Arithmetic Progression**

**Definition of Arithmetic Progression****General Form of an Arithmetic Progress****Arithmetic Mean****Sum of the First n Terms of an Arithmetic Progression****Sum of the Cubes of First n Natural Numbers****Sum of First n Natural Numbers****Sum of the Squares of First n Natural Numbers****Properties of Arithmetic Progression****Selection of Terms in an Arithmetic Progression****Arithmetic Progression Formulae****Problems on Arithmetic Progression****Problems on Sum of 'n' Terms of Arithmetic Progression**

**11 and 12 Grade Math**__From Problems on Arithmetic Progression____ to HOME PAGE__

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.