Selection of Terms in an Arithmetic Progression

Sometimes we need to assume certain number of terms in Arithmetic Progression. The following ways are generally used for the selection of terms in an arithmetic progression.

(i) If the sum of three terms in Arithmetic Progression be given, assume the numbers as a - d, a and a + d. Here common difference is d.

(ii) If the sum of four terms in Arithmetic Progression be given, assume the numbers as a - 3d, a - d, a + d and a + 3d.

(iii) If the sum of five terms in Arithmetic Progression be given, assume the numbers as a - 2d, a - d, a, a + d and a + 2d. Here common difference is 2d.

(iv) If the sum of six terms in Arithmetic Progression be given, assume the numbers as a - 5d, a - 3d, a - d, a + d, a + 3d and a + 5d. Here common difference is 2d.

Note: From the above explanation we understand that in case of an odd number of terms, the middle term is ‘a’ and the common difference is ‘d’.

Again, in case of an even number of terms the middle terms are a - d, a + d and the common difference is 2d.


Solved examples to observe how to use the selection of terms in an arithmetic progression

1. The sum of three numbers in Arithmetic Progression is 12 and the sum of their square is 56. Find the numbers.

Solution:

Let us assume that the three numbers in Arithmetic Progression be a - d, a and a + d.

According to the problem,

Sum = 12                             and

⇒ a - d + a + a + d = 12

⇒ 3a = 12

⇒ a = 4

Sum of the squares = 56

(a - d)2 + a2 + (a + d)2 = 56

⇒ a2 - 2ad + d2 + a2 + a2 + 2ad + d2 = 56

⇒ 3a2 + 2d2 = 56

⇒ 3 × (4)2 + 2d2 = 56

⇒ 3 × 16 + 2d2 = 56

⇒ 48 + 2d2 = 56

⇒ 2d2 = 56 - 48

⇒ 2d2 = 8

⇒ d2 = 4

⇒ d = ± 2

If d = 3, the numbers are 4 – 2, 4, 4 + 2 i.e., 2, 4, 6

If d = -3, the numbers are 4 + 2, 4, 4 - 2 i.e., 6, 4, 2

Therefore, the required numbers are 2, 4, 6 or 6, 4, 2.

2. The sum of four numbers in Arithmetic Progression is 20 and the sum of their square is 120. Find the numbers.

Solution: 

Let us assume that the four numbers in Arithmetic Progression be a - 3d, a - d, a + d and a + 3d.

According to the problem,

Sum = 20

⇒ a - 3d + a - d + a + d + a + 3d = 20

⇒ 4a = 20

⇒ a = 5

and

Sum of the squares = 120

⇒ (a - 3d)2 + (a - d)2 + (a + d)2 + (a + 3d)2 = 120

⇒ a2 - 6ad + 9d2 + a2 - 2ad + d2 + a2 + 2ad + d2 + a2 + 6ad + 9d2 = 120

⇒ 4a2 + 20d2 = 120

⇒ 4 × (5)2 + 20d2 = 120

⇒ 4 × 25 + 20d2 = 120

⇒ 100 + 20d2 = 120

⇒ 20d2 = 120 - 100

20d2 = 20

⇒ d2 = 1

⇒ d = ± 1

If d = 1, the numbers are 5 - 3, 5 - 1, 5 + 1, 5 + 3 i.e., 2, 4, 6, 8

If d = -1, the numbers are 5 + 3, 5 + 1, 5 - 1, 5 - 3 i.e., 8, 6, 4, 2

Therefore, the required numbers are 2, 4, 6, 8 or 8, 6, 4, 2.

 

3. The sum of three numbers in Arithmetic Progression is -3 and their product is 8. Find the numbers.

Solution:

Let us assume that the three numbers in Arithmetic Progression be a - d, a and a + d.

According to the problem,

Sum = -3                                  and

⇒ a - d + a + a + d = -3

⇒ 3a = -3

⇒ a = -1

Product = 8

⇒ (a - d) (a) (a + d) = 8

⇒ (-1)[(-1)2 - d2] = 8

⇒ -1(1 - d2) = 8

⇒ -1 + d2 = 8

⇒ d2 = 8 + 1

⇒ d2 = 9

⇒ d = ± 3

If d = 3, the numbers are -1 - 3, -1, -1 + 3 i.e., -4, -1, 2

If d = -3, the numbers are -1 + 3, -1, -1 - 3 i.e., 2, -1, -4

Therefore, the required numbers are -4, -1, 2 or 2, -1, -4.

Arithmetic Progression





11 and 12 Grade Math 

From Selection of Terms in an Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More