Selection of Terms in an Arithmetic Progression

Sometimes we need to assume certain number of terms in Arithmetic Progression. The following ways are generally used for the selection of terms in an arithmetic progression.

(i) If the sum of three terms in Arithmetic Progression be given, assume the numbers as a - d, a and a + d. Here common difference is d.

(ii) If the sum of four terms in Arithmetic Progression be given, assume the numbers as a - 3d, a - d, a + d and a + 3d.

(iii) If the sum of five terms in Arithmetic Progression be given, assume the numbers as a - 2d, a - d, a, a + d and a + 2d. Here common difference is 2d.

(iv) If the sum of six terms in Arithmetic Progression be given, assume the numbers as a - 5d, a - 3d, a - d, a + d, a + 3d and a + 5d. Here common difference is 2d.

Note: From the above explanation we understand that in case of an odd number of terms, the middle term is ‘a’ and the common difference is ‘d’.

Again, in case of an even number of terms the middle terms are a - d, a + d and the common difference is 2d.


Solved examples to observe how to use the selection of terms in an arithmetic progression

1. The sum of three numbers in Arithmetic Progression is 12 and the sum of their square is 56. Find the numbers.

Solution:

Let us assume that the three numbers in Arithmetic Progression be a - d, a and a + d.

According to the problem,

Sum = 12                             and

⇒ a - d + a + a + d = 12

⇒ 3a = 12

⇒ a = 4

Sum of the squares = 56

(a - d)\(^{2}\) + a\(^{2}\) + (a + d)\(^{2}\) = 56

⇒ a\(^{2}\) - 2ad + d\(^{2}\) + a\(^{2}\) + a\(^{2}\) + 2ad + d\(^{2}\) = 56

⇒ 3a\(^{2}\) + 2d\(^{2}\) = 56

⇒ 3 × (4)\(^{2}\) + 2d\(^{2}\) = 56

⇒ 3 × 16 + 2d\(^{2}\) = 56

⇒ 48 + 2d\(^{2}\) = 56

⇒ 2d\(^{2}\) = 56 - 48

⇒ 2d\(^{2}\) = 8

⇒ d\(^{2}\) = 4

⇒ d = ± 2

If d = 3, the numbers are 4 – 2, 4, 4 + 2 i.e., 2, 4, 6

If d = -3, the numbers are 4 + 2, 4, 4 - 2 i.e., 6, 4, 2

Therefore, the required numbers are 2, 4, 6 or 6, 4, 2.

2. The sum of four numbers in Arithmetic Progression is 20 and the sum of their square is 120. Find the numbers.

Solution: 

Let us assume that the four numbers in Arithmetic Progression be a - 3d, a - d, a + d and a + 3d.

According to the problem,

Sum = 20

⇒ a - 3d + a - d + a + d + a + 3d = 20

⇒ 4a = 20

⇒ a = 5

and

Sum of the squares = 120

⇒ (a - 3d)\(^{2}\) + (a - d)\(^{2}\) + (a + d)\(^{2}\) + (a + 3d)\(^{2}\) = 120

⇒ a\(^{2}\) - 6ad + 9d\(^{2}\) + a\(^{2}\) - 2ad + d\(^{2}\) + a\(^{2}\) + 2ad + d\(^{2}\) + a\(^{2}\) + 6ad + 9d\(^{2}\) = 120

⇒ 4a\(^{2}\) + 20d\(^{2}\) = 120

⇒ 4 × (5)\(^{2}\) + 20d\(^{2}\) = 120

⇒ 4 × 25 + 20d\(^{2}\) = 120

⇒ 100 + 20d\(^{2}\) = 120

⇒ 20d\(^{2}\) = 120 - 100

20d\(^{2}\) = 20

⇒ d\(^{2}\) = 1

⇒ d = ± 1

If d = 1, the numbers are 5 - 3, 5 - 1, 5 + 1, 5 + 3 i.e., 2, 4, 6, 8

If d = -1, the numbers are 5 + 3, 5 + 1, 5 - 1, 5 - 3 i.e., 8, 6, 4, 2

Therefore, the required numbers are 2, 4, 6, 8 or 8, 6, 4, 2.

 

3. The sum of three numbers in Arithmetic Progression is -3 and their product is 8. Find the numbers.

Solution:

Let us assume that the three numbers in Arithmetic Progression be a - d, a and a + d.

According to the problem,

Sum = -3                                  and

⇒ a - d + a + a + d = -3

⇒ 3a = -3

⇒ a = -1

Product = 8

⇒ (a - d) (a) (a + d) = 8

⇒ (-1)[(-1)\(^{2}\) - d\(^{2}\)] = 8

⇒ -1(1 - d\(^{2}\)) = 8

⇒ -1 + d\(^{2}\) = 8

⇒ d\(^{2}\) = 8 + 1

⇒ d\(^{2}\) = 9

⇒ d = ± 3

If d = 3, the numbers are -1 - 3, -1, -1 + 3 i.e., -4, -1, 2

If d = -3, the numbers are -1 + 3, -1, -1 - 3 i.e., 2, -1, -4

Therefore, the required numbers are -4, -1, 2 or 2, -1, -4.

Arithmetic Progression





11 and 12 Grade Math 

From Selection of Terms in an Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 15, 24 04:57 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 15, 24 04:08 PM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 15, 24 03:16 PM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  4. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  5. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More