Sum of n terms of a Geometric Progression

We will learn how to find the sum of n terms of the Geometric Progression {a, ar, ar\(^{2}\), ar\(^{3}\), ar\(^{4}\), ...........}

To prove that the sum of first n terms of the Geometric Progression whose first term ‘a’ and common ratio ‘r’ is given by

S\(_{n}\) = a(\(\frac{r^{n} - 1}{r - 1}\))

⇒ S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)), r ≠ 1.

Let Sn denote the sum of n terms of the Geometric Progression {a, ar, ar\(^{2}\), ar\(^{3}\), ar\(^{4}\), ...........} with first term ‘a’ and common ratio r. Then,

Now, the nth terms of the given Geometric Progression = a ∙ r\(^{n - 1}\).

Therefore, S\(_{n}\) = a + ar + ar\(^{2}\) + ar\(^{3}\) + ar\(^{4}\) + ............... + ar\(^{n - 2}\) + ar\(^{n - 1}\) ............ (i)

Multiplying both sides by r, we get,

rS\(_{n}\) = ar + ar\(^{2}\) + ar\(^{3}\) + ar\(^{4}\) + ar\(^{4}\) + ................ + ar\(^{n - 1}\) + ar\(^{n}\) ............ (ii)

____________________________________________________________

On subtracting (ii) from (i), we get

S\(_{n}\) - rS\(_{n}\) = a - ar\(^{n}\)

⇒ S\(_{n}\)(1 - r) = a(1 - r\(^{n}\))

⇒ S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\)

⇒ S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\)

Hence, S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\) or, S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\)


Notes:

(i) The above formulas do not hold for r = 1. For r = 1, the sum of n terms of the Geometric Progression is S\(_{n}\) = na.

(ii)When the numerical value of r is less than 1 (i.e., - 1 < r < 1), then the formula S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\) is used.

(iii) When the numerical value of r is greater than 1 (i.e., r > 1 or, r < -1) then the formula S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\) is used.

(iv) When r = 1, then S\(_{n}\) = a + a + a + a + a + .................... to n terms = na.

(v) If l is the last term of the Geometric Progression, then l = ar\(^{n - 1}\).

Therefore, S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)) = (\(\frac{a - ar^{n}}{1 - r}\)) = \(\frac{a - (ar^{n - 1})r}{(1 - r)}\) = \(\frac{a - lr}{1 - r}\)

Thus, S\(_{n}\) = \(\frac{a - lr}{1 - r}\)

Or, S\(_{n}\) = \(\frac{lr - a}{r - 1}\), r ≠ 1.

 

Solved examples to find the Sum of first n terms of the Geometric Progression:

1. Find the sum of the geometric series:

4 - 12 + 36 - 108 + .............. to 10 terms

Solution:

The first term of the given Geometric Progression = a = 4 and its common ratio = r = \(\frac{-12}{4}\) = -3.

Therefore, the sum of the first 10 terms of the geometric series

= a ∙ \(\frac{r^{n} - 1}{r - 1}\), [Using the formula S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\) since, r = - 3 i.e., r < -1]

= 4 ∙ \(\frac{(-3)^{10} - 1}{-3 - 1}\)

= 4 ∙ \(\frac{(-3)^{10} - 1}{-4}\)

= - (-3)\(^{10}\) - 1

= -59048


2. Find the sum of the geometric series:

1 + \(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{8}\) + \(\frac{1}{16}\) + .............. to 10 terms

Solution:

The first term of the given Geometric Progression = a = 1 and its common ratio = r = \(\frac{\frac{1}{2}}{1}\) = \(\frac{1}{2}\)

Therefore, the sum of the first 10 terms of the geometric series

S\(_{10}\) = a\(\frac{(1 - r^{10})}{(1 - r)}\)

⇒ S\(_{10}\) = 1 ∙ \(\frac{(1 - (\frac{1}{2})^{10})}{(1 - \frac{1}{2})}\)

⇒ S\(_{10}\) = 2(\(\frac{1}{2^{10}}\))

⇒ S\(_{10}\) = 2(\(\frac{2^{10} - 1}{2^{10}}\))

⇒ S\(_{10}\) = 2(\(\frac{1024 - 1}{1024}\))

⇒ S\(_{10}\) = \(\frac{1024 - 1}{512}\)

⇒ S\(_{10}\) = \(\frac{1023}{512}\)

Note that we have used formula Sn = a(\(\frac{(1 - r^{n})}{(1 - r)}\) since r = 1/4 i.e., r < 1]

 

3. Find the sum of 12 terms of the Geometric Progression 3, 12, 48, 192, 768, ................

Solution:

The first term of the given Geometric Progression = a = 3 and its common ratio = r = \(\frac{12}{3}\) = 4

Therefore, the sum of the first 12 terms of the geometric series

Therefore, S\(_{12}\) = a\(\frac{r^{12} - 1}{r - 1}\)

= 3(\(\frac{4^{12} - 1}{4 - 1}\))

= 3(\(\frac{16777216 - 1}{3}\))

= 16777216 - 1

= 16777215


4. Find the sum to n terms: 5 + 55 + 555 + 5555 + .............

Solution:

We have 5 + 55 + 555 + 5555 + ............. to n terms

= 5[1 + 11 + 111 + 1111 + .............. + to n terms]

= \(\frac{5}{9}\)[9 + 99 + 999 + 9999 + ................ + to n terms]

= \(\frac{5}{9}\)[(10 – 1) + (10\(^{2}\) - 1) + (10\(^{3}\) - 1) + (10\(^{4}\) - 1) + .............. + (10\(^{n}\) - 1)]

= \(\frac{5}{9}\)[(10 + 10\(^{2}\) + 10\(^{3}\) + 10\(^{4}\) + ................ + 10\(^{n}\)) – ( 1 + 1 + 1 + 1 + ................ + 1)] n times

= \(\frac{5}{9}\)[10 × \(\frac{(10^{n} - 1)}{(10 - 1)}\) – n]

= \(\frac{5}{9}\)[\(\frac{10}{9}\)(10\(^{n}\) – 1) – n]

= \(\frac{5}{81}\)[10\(^{n + 1}\) – 10 – 9n]

 Geometric Progression




11 and 12 Grade Math 

From Sum of n terms of a Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More