Sum of n terms of a Geometric Progression

We will learn how to find the sum of n terms of the Geometric Progression {a, ar, ar\(^{2}\), ar\(^{3}\), ar\(^{4}\), ...........}

To prove that the sum of first n terms of the Geometric Progression whose first term ‘a’ and common ratio ‘r’ is given by

S\(_{n}\) = a(\(\frac{r^{n} - 1}{r - 1}\))

⇒ S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)), r ≠ 1.

Let Sn denote the sum of n terms of the Geometric Progression {a, ar, ar\(^{2}\), ar\(^{3}\), ar\(^{4}\), ...........} with first term ‘a’ and common ratio r. Then,

Now, the nth terms of the given Geometric Progression = a ∙ r\(^{n - 1}\).

Therefore, S\(_{n}\) = a + ar + ar\(^{2}\) + ar\(^{3}\) + ar\(^{4}\) + ............... + ar\(^{n - 2}\) + ar\(^{n - 1}\) ............ (i)

Multiplying both sides by r, we get,

rS\(_{n}\) = ar + ar\(^{2}\) + ar\(^{3}\) + ar\(^{4}\) + ar\(^{4}\) + ................ + ar\(^{n - 1}\) + ar\(^{n}\) ............ (ii)

____________________________________________________________

On subtracting (ii) from (i), we get

S\(_{n}\) - rS\(_{n}\) = a - ar\(^{n}\)

⇒ S\(_{n}\)(1 - r) = a(1 - r\(^{n}\))

⇒ S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\)

⇒ S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\)

Hence, S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\) or, S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\)


Notes:

(i) The above formulas do not hold for r = 1. For r = 1, the sum of n terms of the Geometric Progression is S\(_{n}\) = na.

(ii)When the numerical value of r is less than 1 (i.e., - 1 < r < 1), then the formula S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\) is used.

(iii) When the numerical value of r is greater than 1 (i.e., r > 1 or, r < -1) then the formula S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\) is used.

(iv) When r = 1, then S\(_{n}\) = a + a + a + a + a + .................... to n terms = na.

(v) If l is the last term of the Geometric Progression, then l = ar\(^{n - 1}\).

Therefore, S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)) = (\(\frac{a - ar^{n}}{1 - r}\)) = \(\frac{a - (ar^{n - 1})r}{(1 - r)}\) = \(\frac{a - lr}{1 - r}\)

Thus, S\(_{n}\) = \(\frac{a - lr}{1 - r}\)

Or, S\(_{n}\) = \(\frac{lr - a}{r - 1}\), r ≠ 1.

 

Solved examples to find the Sum of first n terms of the Geometric Progression:

1. Find the sum of the geometric series:

4 - 12 + 36 - 108 + .............. to 10 terms

Solution:

The first term of the given Geometric Progression = a = 4 and its common ratio = r = \(\frac{-12}{4}\) = -3.

Therefore, the sum of the first 10 terms of the geometric series

= a ∙ \(\frac{r^{n} - 1}{r - 1}\), [Using the formula S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\) since, r = - 3 i.e., r < -1]

= 4 ∙ \(\frac{(-3)^{10} - 1}{-3 - 1}\)

= 4 ∙ \(\frac{(-3)^{10} - 1}{-4}\)

= - (-3)\(^{10}\) - 1

= -59048


2. Find the sum of the geometric series:

1 + \(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{8}\) + \(\frac{1}{16}\) + .............. to 10 terms

Solution:

The first term of the given Geometric Progression = a = 1 and its common ratio = r = \(\frac{\frac{1}{2}}{1}\) = \(\frac{1}{2}\)

Therefore, the sum of the first 10 terms of the geometric series

S\(_{10}\) = a\(\frac{(1 - r^{10})}{(1 - r)}\)

⇒ S\(_{10}\) = 1 ∙ \(\frac{(1 - (\frac{1}{2})^{10})}{(1 - \frac{1}{2})}\)

⇒ S\(_{10}\) = 2(\(\frac{1}{2^{10}}\))

⇒ S\(_{10}\) = 2(\(\frac{2^{10} - 1}{2^{10}}\))

⇒ S\(_{10}\) = 2(\(\frac{1024 - 1}{1024}\))

⇒ S\(_{10}\) = \(\frac{1024 - 1}{512}\)

⇒ S\(_{10}\) = \(\frac{1023}{512}\)

Note that we have used formula Sn = a(\(\frac{(1 - r^{n})}{(1 - r)}\) since r = 1/4 i.e., r < 1]

 

3. Find the sum of 12 terms of the Geometric Progression 3, 12, 48, 192, 768, ................

Solution:

The first term of the given Geometric Progression = a = 3 and its common ratio = r = \(\frac{12}{3}\) = 4

Therefore, the sum of the first 12 terms of the geometric series

Therefore, S\(_{12}\) = a\(\frac{r^{12} - 1}{r - 1}\)

= 3(\(\frac{4^{12} - 1}{4 - 1}\))

= 3(\(\frac{16777216 - 1}{3}\))

= 16777216 - 1

= 16777215


4. Find the sum to n terms: 5 + 55 + 555 + 5555 + .............

Solution:

We have 5 + 55 + 555 + 5555 + ............. to n terms

= 5[1 + 11 + 111 + 1111 + .............. + to n terms]

= \(\frac{5}{9}\)[9 + 99 + 999 + 9999 + ................ + to n terms]

= \(\frac{5}{9}\)[(10 – 1) + (10\(^{2}\) - 1) + (10\(^{3}\) - 1) + (10\(^{4}\) - 1) + .............. + (10\(^{n}\) - 1)]

= \(\frac{5}{9}\)[(10 + 10\(^{2}\) + 10\(^{3}\) + 10\(^{4}\) + ................ + 10\(^{n}\)) – ( 1 + 1 + 1 + 1 + ................ + 1)] n times

= \(\frac{5}{9}\)[10 × \(\frac{(10^{n} - 1)}{(10 - 1)}\) – n]

= \(\frac{5}{9}\)[\(\frac{10}{9}\)(10\(^{n}\) – 1) – n]

= \(\frac{5}{81}\)[10\(^{n + 1}\) – 10 – 9n]

 Geometric Progression




11 and 12 Grade Math 

From Sum of n terms of a Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Jan 23, 25 02:43 PM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Long Division Method with Regrouping and without Remainder | Division

    Jan 23, 25 02:25 PM

    Dividing a 2-Digits Number by 1-Digit Number With Regrouping
    We will discuss here how to solve step-by-step the long division method with regrouping and without remainder. Consider the following examples: 468 ÷ 3

    Read More

  3. Long Division Method Without Regrouping and Without Remainder | Divide

    Jan 23, 25 10:44 AM

    Dividing a 2-Digits Number by 1-Digit Number
    We will discuss here how to solve step-by-step the long division method without regrouping and without remainder. Consider the following examples: 1. 848 ÷ 4

    Read More

  4. Relationship between Multiplication and Division |Inverse Relationship

    Jan 23, 25 02:00 AM

    We know that multiplication is repeated addition and division is repeated subtraction. This means that multiplication and division are inverse operation. Let us understand this with the following exam…

    Read More

  5. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 02:23 PM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More