Subscribe to our YouTube channel for the latest videos, updates, and tips.


Relation between Arithmetic Means and Geometric Means

We will discuss here about some of the important relation between Arithmetic Means and Geometric Means.

The following properties are:

Property I: The Arithmetic Means of two positive numbers can never be less than their Geometric Mean.

Proof:

Let A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n.

Then, we have A = m + n/2 and G = ±√mn

Since, m and n are positive numbers, hence it is evident that A > G when G = -√mn. Therefore, we are to show A ≥ G when G = √mn.

We have, A - G = m + n/2 - √mn = m + n - 2√mn/2

A - G = ½[(√m - √n)^2] ≥ 0

Therefore, A - G ≥ 0 or, A G.

Hence, the Arithmetic Mean of two positive numbers can never be less than their Geometric Means. (Proved).

 

Property II: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers m and n, then the quadratic equation whose roots are m, n is x^2 - 2Ax + G^2 = 0.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n then, we have

A = m + n/2 and G = √mn.

The equation having m, n as its roots is

x^2 - x(m + n) + nm = 0

x^2 - 2Ax + G^2 = 0, [Since, A = m + n/2 and G = √nm]

 

Property III: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers, then the numbers are A ± √A^2 - G^2.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively then, the equation having its roots as the given numbers is

x^2 - 2Ax + G^2 = 0

⇒ x = 2A ± √4A^2 - 4G^2/2

⇒ x = A ± √A^2 - G^2

Property IV: If the Arithmetic Mean of two numbers x and y is to their Geometric Mean as p : q, then, x : y = (p + √(p^2 - q^2) : (p - √(p^2 - q^2).

 

Solved examples on the properties of Arithmetic and Geometric Means between two given quantities:

1. The Arithmetic and Geometric Means of two positive numbers are 15 and 9 respectively. Find the numbers.

Solution:

Let the two positive numbers be x and y. Then according to the problem,

x + y/2 = 15

or, x + y = 30 .................. (i)

and √xy = 9

or xy = 81

Now, (x - y)^2 = (x + y)^2 - 4xy = (30)^2 - 4 * 81 = 576 = (24)^2

Therefore, x - y = ± 24 .................. (ii)

Solving (ii) and (iii), we get,

2x = 54 or 2x = 6

x = 27 or x = 3

When x = 27 then y = 30 - x = 30 - 27 = 3

and when x = 27 then y = 30 - x = 30 - 3 = 27

Therefore, the required numbers are 27 and 3.


2. Find two positive numbers whose Arithmetic Means increased by 2 than Geometric Means and their difference is 12.

Solution:

Let the two numbers be m and n. Then,

m - n = 12 ........................ (i)

It is given that AM - GM = 2

⇒ m + n/2 - √mn = 2

⇒ m + n - √mn = 4

⇒ (√m - √n^2 = 4

⇒ √m - √n = ±2 ........................ (ii)

Now, m - n = 12

⇒ (√m + √n)(√m - √n) = 12

⇒ (√m + √n)(±2) = 12 ........................ (iii)

⇒ √m + √n = ± 6, [using (ii)]

Solving (ii) and (iii), we get m = 16, n = 4

Hence, the required numbers are 16 and 4.

 

3. If 34 and 16 are the Arithmetic Means and Geometric Means of two positive numbers respectively. Find the numbers.

Solution:

Let the two numbers be m and n. Then

Arithmetic Mean = 34

⇒ m + n/2 = 34

⇒ m + n = 68

And

Geometric Mean = 16

√mn = 16

⇒ mn = 256 ............................... (i)  

Therefore, (m - n)^2 = (m + n)^2 - 4mn

⇒ (m – n)^2 = (68)^2 - 4 × 256 = 3600

⇒ m - n = 60............................... (ii)  

On solving (i) and (ii), we get m = 64 and n = 4.

Hence, the required numbers are 64 and 4.

 Geometric Progression



11 and 12 Grade Math

From Relation between Arithmetic Means and Geometric Means to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More