Relation between Arithmetic Means and Geometric Means

We will discuss here about some of the important relation between Arithmetic Means and Geometric Means.

The following properties are:

Property I: The Arithmetic Means of two positive numbers can never be less than their Geometric Mean.

Proof:

Let A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n.

Then, we have A = m + n/2 and G = ±√mn

Since, m and n are positive numbers, hence it is evident that A > G when G = -√mn. Therefore, we are to show A ≥ G when G = √mn.

We have, A - G = m + n/2 - √mn = m + n - 2√mn/2

A - G = ½[(√m - √n)^2] ≥ 0

Therefore, A - G ≥ 0 or, A G.

Hence, the Arithmetic Mean of two positive numbers can never be less than their Geometric Means. (Proved).

 

Property II: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers m and n, then the quadratic equation whose roots are m, n is x^2 - 2Ax + G^2 = 0.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n then, we have

A = m + n/2 and G = √mn.

The equation having m, n as its roots is

x^2 - x(m + n) + nm = 0

x^2 - 2Ax + G^2 = 0, [Since, A = m + n/2 and G = √nm]

 

Property III: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers, then the numbers are A ± √A^2 - G^2.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively then, the equation having its roots as the given numbers is

x^2 - 2Ax + G^2 = 0

⇒ x = 2A ± √4A^2 - 4G^2/2

⇒ x = A ± √A^2 - G^2

Property IV: If the Arithmetic Mean of two numbers x and y is to their Geometric Mean as p : q, then, x : y = (p + √(p^2 - q^2) : (p - √(p^2 - q^2).

 

Solved examples on the properties of Arithmetic and Geometric Means between two given quantities:

1. The Arithmetic and Geometric Means of two positive numbers are 15 and 9 respectively. Find the numbers.

Solution:

Let the two positive numbers be x and y. Then according to the problem,

x + y/2 = 15

or, x + y = 30 .................. (i)

and √xy = 9

or xy = 81

Now, (x - y)^2 = (x + y)^2 - 4xy = (30)^2 - 4 * 81 = 576 = (24)^2

Therefore, x - y = ± 24 .................. (ii)

Solving (ii) and (iii), we get,

2x = 54 or 2x = 6

x = 27 or x = 3

When x = 27 then y = 30 - x = 30 - 27 = 3

and when x = 27 then y = 30 - x = 30 - 3 = 27

Therefore, the required numbers are 27 and 3.


2. Find two positive numbers whose Arithmetic Means increased by 2 than Geometric Means and their difference is 12.

Solution:

Let the two numbers be m and n. Then,

m - n = 12 ........................ (i)

It is given that AM - GM = 2

⇒ m + n/2 - √mn = 2

⇒ m + n - √mn = 4

⇒ (√m - √n^2 = 4

⇒ √m - √n = ±2 ........................ (ii)

Now, m - n = 12

⇒ (√m + √n)(√m - √n) = 12

⇒ (√m + √n)(±2) = 12 ........................ (iii)

⇒ √m + √n = ± 6, [using (ii)]

Solving (ii) and (iii), we get m = 16, n = 4

Hence, the required numbers are 16 and 4.

 

3. If 34 and 16 are the Arithmetic Means and Geometric Means of two positive numbers respectively. Find the numbers.

Solution:

Let the two numbers be m and n. Then

Arithmetic Mean = 34

⇒ m + n/2 = 34

⇒ m + n = 68

And

Geometric Mean = 16

√mn = 16

⇒ mn = 256 ............................... (i)  

Therefore, (m - n)^2 = (m + n)^2 - 4mn

⇒ (m – n)^2 = (68)^2 - 4 × 256 = 3600

⇒ m - n = 60............................... (ii)  

On solving (i) and (ii), we get m = 64 and n = 4.

Hence, the required numbers are 64 and 4.

 Geometric Progression



11 and 12 Grade Math

From Relation between Arithmetic Means and Geometric Means to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More