Relation between Arithmetic Means and Geometric Means

We will discuss here about some of the important relation between Arithmetic Means and Geometric Means.

The following properties are:

Property I: The Arithmetic Means of two positive numbers can never be less than their Geometric Mean.

Proof:

Let A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n.

Then, we have A = m + n/2 and G = ±√mn

Since, m and n are positive numbers, hence it is evident that A > G when G = -√mn. Therefore, we are to show A ≥ G when G = √mn.

We have, A - G = m + n/2 - √mn = m + n - 2√mn/2

A - G = ½[(√m - √n)^2] ≥ 0

Therefore, A - G ≥ 0 or, A G.

Hence, the Arithmetic Mean of two positive numbers can never be less than their Geometric Means. (Proved).

 

Property II: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers m and n, then the quadratic equation whose roots are m, n is x^2 - 2Ax + G^2 = 0.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n then, we have

A = m + n/2 and G = √mn.

The equation having m, n as its roots is

x^2 - x(m + n) + nm = 0

x^2 - 2Ax + G^2 = 0, [Since, A = m + n/2 and G = √nm]

 

Property III: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers, then the numbers are A ± √A^2 - G^2.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively then, the equation having its roots as the given numbers is

x^2 - 2Ax + G^2 = 0

⇒ x = 2A ± √4A^2 - 4G^2/2

⇒ x = A ± √A^2 - G^2

Property IV: If the Arithmetic Mean of two numbers x and y is to their Geometric Mean as p : q, then, x : y = (p + √(p^2 - q^2) : (p - √(p^2 - q^2).

 

Solved examples on the properties of Arithmetic and Geometric Means between two given quantities:

1. The Arithmetic and Geometric Means of two positive numbers are 15 and 9 respectively. Find the numbers.

Solution:

Let the two positive numbers be x and y. Then according to the problem,

x + y/2 = 15

or, x + y = 30 .................. (i)

and √xy = 9

or xy = 81

Now, (x - y)^2 = (x + y)^2 - 4xy = (30)^2 - 4 * 81 = 576 = (24)^2

Therefore, x - y = ± 24 .................. (ii)

Solving (ii) and (iii), we get,

2x = 54 or 2x = 6

x = 27 or x = 3

When x = 27 then y = 30 - x = 30 - 27 = 3

and when x = 27 then y = 30 - x = 30 - 3 = 27

Therefore, the required numbers are 27 and 3.


2. Find two positive numbers whose Arithmetic Means increased by 2 than Geometric Means and their difference is 12.

Solution:

Let the two numbers be m and n. Then,

m - n = 12 ........................ (i)

It is given that AM - GM = 2

⇒ m + n/2 - √mn = 2

⇒ m + n - √mn = 4

⇒ (√m - √n^2 = 4

⇒ √m - √n = ±2 ........................ (ii)

Now, m - n = 12

⇒ (√m + √n)(√m - √n) = 12

⇒ (√m + √n)(±2) = 12 ........................ (iii)

⇒ √m + √n = ± 6, [using (ii)]

Solving (ii) and (iii), we get m = 16, n = 4

Hence, the required numbers are 16 and 4.

 

3. If 34 and 16 are the Arithmetic Means and Geometric Means of two positive numbers respectively. Find the numbers.

Solution:

Let the two numbers be m and n. Then

Arithmetic Mean = 34

⇒ m + n/2 = 34

⇒ m + n = 68

And

Geometric Mean = 16

√mn = 16

⇒ mn = 256 ............................... (i)  

Therefore, (m - n)^2 = (m + n)^2 - 4mn

⇒ (m – n)^2 = (68)^2 - 4 × 256 = 3600

⇒ m - n = 60............................... (ii)  

On solving (i) and (ii), we get m = 64 and n = 4.

Hence, the required numbers are 64 and 4.

 Geometric Progression



11 and 12 Grade Math

From Relation between Arithmetic Means and Geometric Means to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 10, 24 02:35 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More