Problems on Geometric Progression

Here we will learn how to solve different types of problems on Geometric Progression.

1. Find the common ratio of the Geometric Progression whose, sum of the third and fifth terms is 90 and its first term is 1.

Solution:

The first term of the given Geometric Progression a = 1.

Let ‘r’ be the common ratio of the Geometric Progression.

According to the problem,

 t_3 + t_5 = 90

ar^2 + ar^4 = 90

r^2 + r^4 = 90

r^4 + r^2 – 90 = 0

r^2 + 10r^2 - 9r^2 - 90 = 0

(r^2 + 10)(r^2 - 9) =0

r^2 - 9 = 0

r^2 = 9

r = ±3

Therefore, the common ratio of the Geometric Progression is -3 or 3.

2. Find a Geometric Progress for which the sum of first two terms is -4 and the fifth term is 4 times the third term.

Solution:

Let ‘a’ be the first term and ‘r’ be the common ratio of the given Geometric Progression.

Then, according to the problem the sum of first two terms is -4

t_1 + t_2 = -4

a + ar = -4 .................. (i)

and the fifth term is 4 times the third term.

t_5 = 4t_3

ar^4 = 4ar^2

r^2 = 4

r = ±2

Putting r = 2 and -2 respectively in (i), we get a = -4/3 and a = 4.

Thus, the required Geometric Progression is -4/3, -8/3, -16/3, ............ or 4, -8, 16, -32, ........................


3. Prove that in a Geometric Progression of finite number of terms the product of any two terms equidistant from the beginning and the end is constant and is equal to the product of the first and last and last terms.

Solution:

Let ‘a’ be the first term, ‘b’ the last term and ‘r’ the common ratio of a finite Geometric Progression.

Then the nth term from the beginning = a* r^(n - 1)

And the nth term from the end = b/r^(n -1)

Therefore, the product of two equidistant terms from the beginning and end (i.e., the terms at the nth positions) = a * r^(n - 1) * b/r^(n -1)  = a * b = constant = first term X last term.          Proved.

 Geometric Progression



11 and 12 Grade Math 

From Problems on Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More