Selection of Terms in Geometric Progression

Sometimes we need to assume certain number of terms in Geometric Progression. The following ways are generally used for the selection of terms in Geometric Progression.

(i) If the product of three numbers in Geometric Progression be given, assume the numbers as \(\frac{a}{r}\), a and ar. Here common ratio is r.

(ii) If the product of four numbers in Geometric Progression be given, assume the numbers as \(\frac{a}{r^{3}}\)\(\frac{a}{r}\), ar and ar\(^{3}\). Here common ratio is r\(^{2}\).

(iii) If the product of five numbers in Geometric Progression be given, assume the numbers as \(\frac{a}{r^{2}}\)\(\frac{a}{r}\), a, ar and ar\(^{2}\). Here common ratio is r.

(iv) If the product of the numbers is not given, then the numbers are taken as a, ar, ar\(^{2}\), ar\(^{3}\), ar\(^{4}\), ar\(^{5}\), .....................

Solved examples to observe how to use the selection of terms in Geometric Progression:

1. Sum and product of three numbers of a geometric progression are 38 and 1728 respectively. Find the numbers.

Solution:

Let the numbers be \(\frac{a}{r}\), a and ar. Then,

Product = 1728

⇒ \(\frac{a}{r}\) ∙  ar = 1728

⇒ a = 12

Sum = 38

⇒ \(\frac{a}{r}\) + a + ar = 38

⇒ a(\(\frac{1}{r}\) + 1 + r) = 38

⇒ 12(1 + r + \(\frac{r^{2}}{r}\)) = 38

⇒ 6 + 6r + 6r\(^{2}\) = 19r

⇒ 6r\(^{2}\) - 13r + 6 = 0

⇒ (3r - 2)(2r - 3) = 0

⇒ (3r - 2) = 0 or, (2r - 3) = 0

⇒ 3r = 2 or, 2r = 3

⇒ r = \(\frac{2}{3}\) or, r = \(\frac{3}{2}\)

Hence, putting the values of a and r, the required numbers are 8, 12, 18 (Taking r = \(\frac{2}{3}\))

or, 18, 12, 8 (Taking r = \(\frac{3}{2}\))


2. Find three numbers in Geometric Progression whose sum is 35 and product is 1000.

Solution:

Let the required numbers in Geometric Progression be \(\frac{a}{r}\), a and ar.

By the conditions of the problem, we have,

\(\frac{a}{r}\)  a ∙ ar = 1000

a\(^{3}\) = 1000

a = 10 (Since, a is real)

and \(\frac{a}{r}\) + a + ar = 35

a + ar + \(\frac{ar^{2}}{r}\) = 35

10(1 + r + r\(^{2}\)) = 35r (Since a = 10)

2 (1 + r + r\(^{2}\)) = 7r

2 + 2r + 2r\(^{2}\) - 7r = 0

2r\(^{2}\) - 5r + 2 = 0

2r\(^{2}\) - 4r - r + 2 = 0

2r(r - 2) -1(r - 2) = 0

(r - 2)(2r - 1) = 0

Therefore, r = 2 or, ½

Hence, putting the values of a and r, the required numbers are \(\frac{10}{2}\), 10, 10  2 i.e., 5, 10, 20 (Taking r = 2)

Or, 10  2, 10, 10  ½ i.e., 20, 10, 5 (taking r = ½).

 Geometric Progression




11 and 12 Grade Math 

From Selection of Terms in Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 10 Times Table | Printable Multiplication Table | Video

    Mar 21, 25 03:46 PM

    worksheet on multiplication of 10 times table
    Worksheet on 10 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  3. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  4. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  5. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More