Properties of Geometric Progression

We will discuss about some of the properties of Geometric Progressions and geometric series which we will frequently use in solving different types of problems on Geometric Progressions.

Property I: When each term of a Geometric Progression is multiplied or divided by a same non-zero quantity, then the new series forms a Geometric Progression having the same common ratio.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

\(\frac{a_{n + 1}}{a_{n}}\) = r, for all n ∈ N ................... (i)

Let k be a non-zero constant. Multiplying all the terms of the given Geometric Progression by k, we obtain the sequence

ka\(_{1}\), ka\(_{2}\), ka\(_{3}\), ka\(_{4}\), ................., ka\(_{n}\), ................

Clearly, \(\frac{ka_{(n + 1)}}{ka_{n}}\) = \(\frac{a_{(n + 1)}}{a_{n}}\) = r for all n ∈ N [Using (i)]

Hence, the new sequence also forms a Geometric Progression with common ratio r.


Property II: In a Geometric Progression the reciprocals of the terms also form a Geometric Progression.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

\(\frac{a_{n + 1}}{a_{n}}\) = r, for all n ∈ N ................... (i)

The series formed by the reciprocals of the terms of the given Geometric Progression is

\(\frac{1}{a_{1}}\), \(\frac{1}{a_{2}}\), \(\frac{1}{a_{3}}\), ................., \(\frac{1}{a_{n}}\), .................

We have, \(\frac{\frac{1}{a_(n + 1)}}{\frac{1}{a_{n}}}\) = \(\frac{a_{n}}{a_{n + 1}}\) = \(\frac{1}{r}\) [Using (i)]

So, the new series is a Geometric Progression with common ratio \(\frac{1}{r}\).   

 

Property III: When all the terms of a Geometric Progression be raised to the same power, then the new series also forms a Geometric Progression.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

a_(n + 1)/a_n = r, for all n ∈ N ................... (i)

Let k be a non-zero real number. Consider the sequence

a1^k, a2^k, a3^k, ........, an^k, ...........

We have, a_(n +1)^k/a_n^k = (a_(n +1)/a_n)^k = r^k for all n ∈ N, [Using (i)]

Hence, a1^k, a2^k, a3^k, ........, an^k, ........... is a Geometric Progression with common ratio r^k.

Property IV: The product of the first and the last term is always equal to the product of the terms equidistant from the beginning and the end of finite Geometric Progression.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

Kth term form the beginning = a_k = a_1r^(k - 1)

Kth term from the end = (n – k + 1)th term form the beginning

                                         = a_(n – k + 1) = a_1r^(n – k)

Therefore, kth term from the beginning)(kth term from the end) = a_ka_(n – k + 1)

= a1r^(k – 1)a1r^(n – k) = a162 r^(n -1) = a1 * a1r^(n – 1) = a1an for all k = 2, 3, ......, n - 1.

Hence, the product of the terms equidistant from the beginning and the end is always same and is equal to the product of the first and the last term.

 

Property V: Three non-zero quantity a, b, c are in Geometric Progression if and only if b^2 = ac.

Proof:

A, b, c are in Geometric Progression ⇔ b/a = c/b = common ratio ⇔ b^2 = ac

Note: When a, b, c are in Geometric Progression, then b is known as the geometric mean of a and c.


Property VI: When the terms of a Geometric Progression are selected at intervals then the new series obtained also a Geometric Progression.

Property VII: In a Geometric Progression of non-zero non-negative terms, then logarithm of each term is form an Arithmetic Progression and vice-versa.

i.e., If a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), ..................... are non-zero non-negative terms of a Geometric Progression then loga1, loga2, loga3, loga4, ....................., logan, ......................... forms an Arithmetic Progression and vice-versa.

Proof:

If a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), ..................... is a Geometric Progression of non-zero non-negative terms with common ratio r. Then,

a_n = a1r^(n -1), for all n ∈ N

⇒ log a_n = log a1 + (n – 1) log r, for all n ∈ N

Let b_n = log a_n = log a1 + (n – 1) log r, for all n ∈ N

Then, b_ n +1 – b_n = [loga1 + n log r] – [log a1 + (n -1) log r] = log r, for all n ∈ N.

Clearly, b_n + 1 – b_n = log r = constant for all n ∈ N. Hence, b1, b2, b3, b4, ................., bn, ....... i.e., log a1, log a2, log a3, log a4, ..................., log an, ........... be an Arithmetic Progression with common difference log r.

Conversely, let log a1, log a2, log a3, log a4, ..................., log an, ........... be an Arithmetic Progression with common difference d. Then,

log a _(n + 1) – log an = d, for all n ∈ N.

⇒ log (a_n +1/an) = d, for all n ∈ N.

⇒ a_n +1/an = e^d, for all n ∈ N.

⇒ a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), ..................... is a Geometric Progression with common ratio e^d.

 Geometric Progression




11 and 12 Grade Math

From Properties of Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More