Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Properties of Geometric Progression

We will discuss about some of the properties of Geometric Progressions and geometric series which we will frequently use in solving different types of problems on Geometric Progressions.

Property I: When each term of a Geometric Progression is multiplied or divided by a same non-zero quantity, then the new series forms a Geometric Progression having the same common ratio.

Proof:

Let, a1, a2, a3, a4, .................., an, .......... be a Geometric Progression with common r. Then,

an+1an = r, for all n ∈ N ................... (i)

Let k be a non-zero constant. Multiplying all the terms of the given Geometric Progression by k, we obtain the sequence

ka1, ka2, ka3, ka4, ................., kan, ................

Clearly, ka(n+1)kan = a(n+1)an = r for all n ∈ N [Using (i)]

Hence, the new sequence also forms a Geometric Progression with common ratio r.


Property II: In a Geometric Progression the reciprocals of the terms also form a Geometric Progression.

Proof:

Let, a1, a2, a3, a4, .................., an, .......... be a Geometric Progression with common r. Then,

an+1an = r, for all n ∈ N ................... (i)

The series formed by the reciprocals of the terms of the given Geometric Progression is

1a1, 1a2, 1a3, ................., 1an, .................

We have, 1a(n+1)1an = anan+1 = 1r [Using (i)]

So, the new series is a Geometric Progression with common ratio 1r.   

 

Property III: When all the terms of a Geometric Progression be raised to the same power, then the new series also forms a Geometric Progression.

Proof:

Let, a1, a2, a3, a4, .................., an, .......... be a Geometric Progression with common r. Then,

a_(n + 1)/a_n = r, for all n ∈ N ................... (i)

Let k be a non-zero real number. Consider the sequence

a1^k, a2^k, a3^k, ........, an^k, ...........

We have, a_(n +1)^k/a_n^k = (a_(n +1)/a_n)^k = r^k for all n ∈ N, [Using (i)]

Hence, a1^k, a2^k, a3^k, ........, an^k, ........... is a Geometric Progression with common ratio r^k.

Property IV: The product of the first and the last term is always equal to the product of the terms equidistant from the beginning and the end of finite Geometric Progression.

Proof:

Let, a1, a2, a3, a4, .................., an, .......... be a Geometric Progression with common r. Then,

Kth term form the beginning = a_k = a_1r^(k - 1)

Kth term from the end = (n – k + 1)th term form the beginning

                                         = a_(n – k + 1) = a_1r^(n – k)

Therefore, kth term from the beginning)(kth term from the end) = a_ka_(n – k + 1)

= a1r^(k – 1)a1r^(n – k) = a162 r^(n -1) = a1 * a1r^(n – 1) = a1an for all k = 2, 3, ......, n - 1.

Hence, the product of the terms equidistant from the beginning and the end is always same and is equal to the product of the first and the last term.

 

Property V: Three non-zero quantity a, b, c are in Geometric Progression if and only if b^2 = ac.

Proof:

A, b, c are in Geometric Progression ⇔ b/a = c/b = common ratio ⇔ b^2 = ac

Note: When a, b, c are in Geometric Progression, then b is known as the geometric mean of a and c.


Property VI: When the terms of a Geometric Progression are selected at intervals then the new series obtained also a Geometric Progression.

Property VII: In a Geometric Progression of non-zero non-negative terms, then logarithm of each term is form an Arithmetic Progression and vice-versa.

i.e., If a1, a2, a3, a4, .................., an, ..................... are non-zero non-negative terms of a Geometric Progression then loga1, loga2, loga3, loga4, ....................., logan, ......................... forms an Arithmetic Progression and vice-versa.

Proof:

If a1, a2, a3, a4, .................., an, ..................... is a Geometric Progression of non-zero non-negative terms with common ratio r. Then,

a_n = a1r^(n -1), for all n ∈ N

⇒ log a_n = log a1 + (n – 1) log r, for all n ∈ N

Let b_n = log a_n = log a1 + (n – 1) log r, for all n ∈ N

Then, b_ n +1 – b_n = [loga1 + n log r] – [log a1 + (n -1) log r] = log r, for all n ∈ N.

Clearly, b_n + 1 – b_n = log r = constant for all n ∈ N. Hence, b1, b2, b3, b4, ................., bn, ....... i.e., log a1, log a2, log a3, log a4, ..................., log an, ........... be an Arithmetic Progression with common difference log r.

Conversely, let log a1, log a2, log a3, log a4, ..................., log an, ........... be an Arithmetic Progression with common difference d. Then,

log a _(n + 1) – log an = d, for all n ∈ N.

⇒ log (a_n +1/an) = d, for all n ∈ N.

⇒ a_n +1/an = e^d, for all n ∈ N.

⇒ a1, a2, a3, a4, .................., an, ..................... is a Geometric Progression with common ratio e^d.

 Geometric Progression




11 and 12 Grade Math

From Properties of Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    May 07, 25 01:48 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Dividing Decimals Word Problems Worksheet | Answers |Decimals Division

    May 07, 25 01:33 AM

    Dividing Decimals Word Problems Worksheet
    In dividing decimals word problems worksheet we will get different types of problems on decimals division word problems, dividing a decimal by a whole number, dividing a decimals and dividing a decima…

    Read More

  3. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:23 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  4. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  5. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More