Properties of Geometric Progression

We will discuss about some of the properties of Geometric Progressions and geometric series which we will frequently use in solving different types of problems on Geometric Progressions.

Property I: When each term of a Geometric Progression is multiplied or divided by a same non-zero quantity, then the new series forms a Geometric Progression having the same common ratio.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

\(\frac{a_{n + 1}}{a_{n}}\) = r, for all n ∈ N ................... (i)

Let k be a non-zero constant. Multiplying all the terms of the given Geometric Progression by k, we obtain the sequence

ka\(_{1}\), ka\(_{2}\), ka\(_{3}\), ka\(_{4}\), ................., ka\(_{n}\), ................

Clearly, \(\frac{ka_{(n + 1)}}{ka_{n}}\) = \(\frac{a_{(n + 1)}}{a_{n}}\) = r for all n ∈ N [Using (i)]

Hence, the new sequence also forms a Geometric Progression with common ratio r.


Property II: In a Geometric Progression the reciprocals of the terms also form a Geometric Progression.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

\(\frac{a_{n + 1}}{a_{n}}\) = r, for all n ∈ N ................... (i)

The series formed by the reciprocals of the terms of the given Geometric Progression is

\(\frac{1}{a_{1}}\), \(\frac{1}{a_{2}}\), \(\frac{1}{a_{3}}\), ................., \(\frac{1}{a_{n}}\), .................

We have, \(\frac{\frac{1}{a_(n + 1)}}{\frac{1}{a_{n}}}\) = \(\frac{a_{n}}{a_{n + 1}}\) = \(\frac{1}{r}\) [Using (i)]

So, the new series is a Geometric Progression with common ratio \(\frac{1}{r}\).   

 

Property III: When all the terms of a Geometric Progression be raised to the same power, then the new series also forms a Geometric Progression.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

a_(n + 1)/a_n = r, for all n ∈ N ................... (i)

Let k be a non-zero real number. Consider the sequence

a1^k, a2^k, a3^k, ........, an^k, ...........

We have, a_(n +1)^k/a_n^k = (a_(n +1)/a_n)^k = r^k for all n ∈ N, [Using (i)]

Hence, a1^k, a2^k, a3^k, ........, an^k, ........... is a Geometric Progression with common ratio r^k.

Property IV: The product of the first and the last term is always equal to the product of the terms equidistant from the beginning and the end of finite Geometric Progression.

Proof:

Let, a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), .......... be a Geometric Progression with common r. Then,

Kth term form the beginning = a_k = a_1r^(k - 1)

Kth term from the end = (n – k + 1)th term form the beginning

                                         = a_(n – k + 1) = a_1r^(n – k)

Therefore, kth term from the beginning)(kth term from the end) = a_ka_(n – k + 1)

= a1r^(k – 1)a1r^(n – k) = a162 r^(n -1) = a1 * a1r^(n – 1) = a1an for all k = 2, 3, ......, n - 1.

Hence, the product of the terms equidistant from the beginning and the end is always same and is equal to the product of the first and the last term.

 

Property V: Three non-zero quantity a, b, c are in Geometric Progression if and only if b^2 = ac.

Proof:

A, b, c are in Geometric Progression ⇔ b/a = c/b = common ratio ⇔ b^2 = ac

Note: When a, b, c are in Geometric Progression, then b is known as the geometric mean of a and c.


Property VI: When the terms of a Geometric Progression are selected at intervals then the new series obtained also a Geometric Progression.

Property VII: In a Geometric Progression of non-zero non-negative terms, then logarithm of each term is form an Arithmetic Progression and vice-versa.

i.e., If a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), ..................... are non-zero non-negative terms of a Geometric Progression then loga1, loga2, loga3, loga4, ....................., logan, ......................... forms an Arithmetic Progression and vice-versa.

Proof:

If a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), ..................... is a Geometric Progression of non-zero non-negative terms with common ratio r. Then,

a_n = a1r^(n -1), for all n ∈ N

⇒ log a_n = log a1 + (n – 1) log r, for all n ∈ N

Let b_n = log a_n = log a1 + (n – 1) log r, for all n ∈ N

Then, b_ n +1 – b_n = [loga1 + n log r] – [log a1 + (n -1) log r] = log r, for all n ∈ N.

Clearly, b_n + 1 – b_n = log r = constant for all n ∈ N. Hence, b1, b2, b3, b4, ................., bn, ....... i.e., log a1, log a2, log a3, log a4, ..................., log an, ........... be an Arithmetic Progression with common difference log r.

Conversely, let log a1, log a2, log a3, log a4, ..................., log an, ........... be an Arithmetic Progression with common difference d. Then,

log a _(n + 1) – log an = d, for all n ∈ N.

⇒ log (a_n +1/an) = d, for all n ∈ N.

⇒ a_n +1/an = e^d, for all n ∈ N.

⇒ a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), .................., a\(_{n}\), ..................... is a Geometric Progression with common ratio e^d.

 Geometric Progression




11 and 12 Grade Math

From Properties of Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 05:43 PM

    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More