Sum of an infinite Geometric Progression

The sum of an infinite Geometric Progression whose first term 'a' and common ratio 'r' (-1 < r < 1 i.e., |r| < 1) is

S = \(\frac{a}{1 - r}\)

Proof:

A series of the form a + ar + ar\(^{2}\) + ...... + ar\(^{n}\) + ............... ∞ is called an infinite geometric series.

Let us consider an infinite Geometric Progression with first term a and common ratio r, where -1 < r < 1 i.e., |r| < 1. Therefore, the sum of n terms of this Geometric Progression in given by

S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)) = \(\frac{a}{1 - r}\) - \(\frac{ar^{n}}{1 - r}\) ........................ (i)

Since - 1< r < 1, therefore r\(^{n}\)  decreases as n increases and r^n tends to zero an n tends to infinity i.e., r\(^{n}\) → 0 as n → ∞.

Therefore,

\(\frac{ar^{n}}{1 - r}\) → 0 as n → ∞.

Hence, from (i), the sum of an infinite Geometric Progression ig given by

S = \(\lim_{x \to 0}\) S\(_{n}\)  = \(\lim_{x \to \infty} (\frac{a}{ 1 - r} - \frac{ar^{2}}{1 - r})\) = \(\frac{a}{1 - r}\) if |r| < 1


Note: (i) If an infinite series has a sum, the series is said to be convergent. On the contrary, an infinite series is said to be divergent it it has no sum. The infinite geometric series a + ar + ar\(^{2}\) + ...... + ar\(^{n}\) + ............... ∞ has a sum when -1 < r < 1; so it is convergent when -1 < r < 1. But it is divergent when r > 1 or, r < -1.

(ii) If r ≥ 1, then the sum of an infinite Geometric Progression tens to infinity.


Solved examples to find the sum to infinity of the Geometric Progression:

1. Find the sum to infinity of the Geometric Progression

-\(\frac{5}{4}\), \(\frac{5}{16}\), -\(\frac{5}{64}\), \(\frac{5}{256}\), .........

Solution:

The given Geometric Progression is -\(\frac{5}{4}\), \(\frac{5}{16}\), -\(\frac{5}{64}\), \(\frac{5}{256}\), .........

It has first term a = -\(\frac{5}{4}\) and the common ratio r = -\(\frac{1}{4}\). Also, |r| < 1.

Therefore, the sum to infinity is given by

S = \(\frac{a}{1 - r}\) = \(\frac{\frac{5}{4}}{1 - (-\frac{1}{4})}\)  = -1


2. Express the recurring decimals as rational number: \(3\dot{6}\)

Solution:

\(3\dot{6}\) = 0.3636363636............... ∞

= 0.36 + 0.0036 + 0.000036 + 0.00000036 + .................. ∞

= \(\frac{36}{10^{2}}\) + \(\frac{36}{10^{4}}\) + \(\frac{36}{10^{6}}\) + \(\frac{36}{10^{8}}\) + .................. ∞, which is an infinite geometric series whose first term = \(\frac{36}{10^{2}}\) and common ratio = \(\frac{1}{10^{2}}\) < 1.

= \(\frac{\frac{36}{10^{2}}}{1 - \frac{1}{10^{2}}}\), [Using the formula S = \(\frac{a}{1 - r}\)]

= \(\frac{\frac{36}{100}}{1 - \frac{1}{100}}\)

= \(\frac{\frac{36}{100}}{\frac{100 - 1}{100}}\)

= \(\frac{\frac{36}{100}}{\frac{99}{100}}\)

= \(\frac{36}{100}\) × \(\frac{100}{99}\)

= \(\frac{4}{11}\)

 Geometric Progression




11 and 12 Grade Math 

From Sum of an infinite Geometric Progression to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Mar 29, 24 09:02 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More

  2. Multiplication of a Number by a 3-Digit Number |3-Digit Multiplication

    Mar 28, 24 06:33 PM

    Multiplying by 3-Digit Number
    In multiplication of a number by a 3-digit number are explained here step by step. Consider the following examples on multiplication of a number by a 3-digit number: 1. Find the product of 36 × 137

    Read More

  3. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  4. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  5. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More