Sum of an infinite Geometric Progression

The sum of an infinite Geometric Progression whose first term 'a' and common ratio 'r' (-1 < r < 1 i.e., |r| < 1) is

S = \(\frac{a}{1 - r}\)

Proof:

A series of the form a + ar + ar\(^{2}\) + ...... + ar\(^{n}\) + ............... ∞ is called an infinite geometric series.

Let us consider an infinite Geometric Progression with first term a and common ratio r, where -1 < r < 1 i.e., |r| < 1. Therefore, the sum of n terms of this Geometric Progression in given by

S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)) = \(\frac{a}{1 - r}\) - \(\frac{ar^{n}}{1 - r}\) ........................ (i)

Since - 1< r < 1, therefore r\(^{n}\)  decreases as n increases and r^n tends to zero an n tends to infinity i.e., r\(^{n}\) → 0 as n → ∞.

Therefore,

\(\frac{ar^{n}}{1 - r}\) → 0 as n → ∞.

Hence, from (i), the sum of an infinite Geometric Progression ig given by

S = \(\lim_{x \to 0}\) S\(_{n}\)  = \(\lim_{x \to \infty} (\frac{a}{ 1 - r} - \frac{ar^{2}}{1 - r})\) = \(\frac{a}{1 - r}\) if |r| < 1


Note: (i) If an infinite series has a sum, the series is said to be convergent. On the contrary, an infinite series is said to be divergent it it has no sum. The infinite geometric series a + ar + ar\(^{2}\) + ...... + ar\(^{n}\) + ............... ∞ has a sum when -1 < r < 1; so it is convergent when -1 < r < 1. But it is divergent when r > 1 or, r < -1.

(ii) If r ≥ 1, then the sum of an infinite Geometric Progression tens to infinity.


Solved examples to find the sum to infinity of the Geometric Progression:

1. Find the sum to infinity of the Geometric Progression

-\(\frac{5}{4}\), \(\frac{5}{16}\), -\(\frac{5}{64}\), \(\frac{5}{256}\), .........

Solution:

The given Geometric Progression is -\(\frac{5}{4}\), \(\frac{5}{16}\), -\(\frac{5}{64}\), \(\frac{5}{256}\), .........

It has first term a = -\(\frac{5}{4}\) and the common ratio r = -\(\frac{1}{4}\). Also, |r| < 1.

Therefore, the sum to infinity is given by

S = \(\frac{a}{1 - r}\) = \(\frac{\frac{5}{4}}{1 - (-\frac{1}{4})}\)  = -1


2. Express the recurring decimals as rational number: \(3\dot{6}\)

Solution:

\(3\dot{6}\) = 0.3636363636............... ∞

= 0.36 + 0.0036 + 0.000036 + 0.00000036 + .................. ∞

= \(\frac{36}{10^{2}}\) + \(\frac{36}{10^{4}}\) + \(\frac{36}{10^{6}}\) + \(\frac{36}{10^{8}}\) + .................. ∞, which is an infinite geometric series whose first term = \(\frac{36}{10^{2}}\) and common ratio = \(\frac{1}{10^{2}}\) < 1.

= \(\frac{\frac{36}{10^{2}}}{1 - \frac{1}{10^{2}}}\), [Using the formula S = \(\frac{a}{1 - r}\)]

= \(\frac{\frac{36}{100}}{1 - \frac{1}{100}}\)

= \(\frac{\frac{36}{100}}{\frac{100 - 1}{100}}\)

= \(\frac{\frac{36}{100}}{\frac{99}{100}}\)

= \(\frac{36}{100}\) × \(\frac{100}{99}\)

= \(\frac{4}{11}\)

 Geometric Progression




11 and 12 Grade Math 

From Sum of an infinite Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  2. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 14, 24 02:12 PM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  5. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More