Sum of an infinite Geometric Progression

The sum of an infinite Geometric Progression whose first term 'a' and common ratio 'r' (-1 < r < 1 i.e., |r| < 1) is

S = a1r

Proof:

A series of the form a + ar + ar2 + ...... + arn + ............... ∞ is called an infinite geometric series.

Let us consider an infinite Geometric Progression with first term a and common ratio r, where -1 < r < 1 i.e., |r| < 1. Therefore, the sum of n terms of this Geometric Progression in given by

Sn = a(1rn1r) = a1r - arn1r ........................ (i)

Since - 1< r < 1, therefore rn  decreases as n increases and r^n tends to zero an n tends to infinity i.e., rn → 0 as n → ∞.

Therefore,

arn1r → 0 as n → ∞.

Hence, from (i), the sum of an infinite Geometric Progression ig given by

S = limx0 Sn  = limx(a1rar21r) = a1r if |r| < 1


Note: (i) If an infinite series has a sum, the series is said to be convergent. On the contrary, an infinite series is said to be divergent it it has no sum. The infinite geometric series a + ar + ar2 + ...... + arn + ............... ∞ has a sum when -1 < r < 1; so it is convergent when -1 < r < 1. But it is divergent when r > 1 or, r < -1.

(ii) If r ≥ 1, then the sum of an infinite Geometric Progression tens to infinity.


Solved examples to find the sum to infinity of the Geometric Progression:

1. Find the sum to infinity of the Geometric Progression

-54, 516, -564, 5256, .........

Solution:

The given Geometric Progression is -54, 516, -564, 5256, .........

It has first term a = -54 and the common ratio r = -14. Also, |r| < 1.

Therefore, the sum to infinity is given by

S = a1r = 541(14)  = -1


2. Express the recurring decimals as rational number: 3˙6

Solution:

3˙6 = 0.3636363636............... ∞

= 0.36 + 0.0036 + 0.000036 + 0.00000036 + .................. ∞

= 36102 + 36104 + 36106 + 36108 + .................. ∞, which is an infinite geometric series whose first term = 36102 and common ratio = 1102 < 1.

= 3610211102, [Using the formula S = a1r]

= 3610011100

= 361001001100

= 3610099100

= 36100 × 10099

= 411

 Geometric Progression




11 and 12 Grade Math 

From Sum of an infinite Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

    May 03, 25 04:38 PM

    Multiplication of Decimal Numbers
    The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total…

    Read More

  2. Magic Square | Add upto 15 | Add upto 27 | Fibonacci Sequence | Videos

    May 03, 25 10:50 AM

    check the magic square
    In a magic square, every row, column and each of the diagonals add up to the same total. Here is a magic square. The numbers 1 to 9 are placed in the small squares in such a way that no number is repe

    Read More

  3. Division by 10 and 100 and 1000 |Division Process|Facts about Division

    May 03, 25 10:41 AM

    Divide 868 by 10
    Division by 10 and 100 and 1000 are explained here step by step. when we divide a number by 10, the digit at ones place of the given number becomes the remainder and the digits at the remaining places…

    Read More

  4. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  5. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More