Geometric Progression

We will discuss here about the Geometric Progression along with examples.

A sequence of numbers is said to be Geometric Progression if the ratio of any term and its preceding term is always a constant quantity.


Definition of Geometric Progression:

A sequence of non-zero number is said to be in Geometric Progression (abbreviated as G.P.) if each term, after the first, is obtained by multiplying the preceding term by a constant quantity (positive or negative).

The constant ratio is said to be the common ratio of the Geometric Progression and is denoted by dividing any term by that which immediately precedes it.

In other words, the sequence {a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), ..................., a\(_{n}\), ................. } is said to be in Geometric Progression, if \(\frac{a_{n + 1}}{a_{n}}\) = constant for all n ϵ N i.e., for all integral values of a, the ratio \(\frac{a_{n + 1}}{a_{n}}\) is constant.

Examples on Geometric Progression

1. The sequence 3, 15, 75, 375, 1875, .................... is a Geometric Progression, because \(\frac{15}{5}\) = \(\frac{75}{15}\) = \(\frac{375}{75}\) = \(\frac{1875}{375}\) = .................. = 5, which is constant.

Clearly, this sequence is a Geometric Progression with first term 3 and common ratio 5.


2. The sequence \(\frac{1}{3}\), -\(\frac{1}{2}\), \(\frac{3}{4}\), -\(\frac{9}{8}\), is a Geometric Progression with first term \(\frac{1}{3}\) and common ratio \(\frac{-\frac{1}{2}}{\frac{1}{3}}\) = -\(\frac{3}{2}\)

 

3. The sequence of numbers {4, 12, 36, 108, 324, ........... } forms a Geometric Progression whose common ratio is 3, because,

Second term (12) = 3 × First term (4),

Third term (36) = 3 × Second term (12),

Fourth term (108) = 3 × Third term (36),

Fifth term (324) = 3 × Fourth term (108) and so on.

In other words,

\(\frac{Second term (12)}{First term (4)}\) = \(\frac{Third term (36)}{Second term (12)}\) = \(\frac{Fourth term (108)}{Third term (36)}\) = \(\frac{Fifth term (324)}{Fourth term (108)}\) = ................. = 3 (a constant)


Solved example on Geometric Progression

Show that the sequence given by an = 3(2\(^{n}\)), for all n ϵ N, is a Geometric Progression. Also, find its common ratio.

Solution:

The given sequence is a\(_{n}\) = 3(2\(^{n}\))

Now putting n = n +1 in the given sequence we get,

a\(_{n + 1}\) = 3(2\(^{n + 1}\))

Now, \(\frac{a_{n + 1}}{a_{n}}\) = \(\frac{3(2^{n + 1})}{3(2^{n})}\) = 2

Therefore, we clearly see that for all integral values of n, the \(\frac{a_{n + 1}}{a_{n}}\) = 2 (constant). Thus, the given sequence is an Geometric Progression with common ratio 2.


Geometric Series:

If a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), ..............., a\(_{n}\), .......... is a Geometric Progression, then the expression a\(_{1}\) + a\(_{2}\) + a\(_{3}\) + ......... + a\(_{n}\) + .................... is called a geometric series.

Notes:

(i) The geometric series is finite according as the corresponding Geometric Progression consists of finite number of terms.

(ii) The geometric series is infinite according as the corresponding Geometric Progression consists of infinite number of terms.

 Geometric Progression





11 and 12 Grade Math 

From Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Relation between Diameter Radius and Circumference |Problems |Examples

    Apr 22, 24 05:19 PM

    Relation between Radius and Diameter of a Circle
    Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

    Read More

  2. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 22, 24 01:35 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  3. Preschool Math Activities | Colorful Preschool Worksheets | Lesson

    Apr 21, 24 10:57 AM

    Preschool Math Activities
    Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 20, 24 05:29 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More