Geometric Progression

We will discuss here about the Geometric Progression along with examples.

A sequence of numbers is said to be Geometric Progression if the ratio of any term and its preceding term is always a constant quantity.


Definition of Geometric Progression:

A sequence of non-zero number is said to be in Geometric Progression (abbreviated as G.P.) if each term, after the first, is obtained by multiplying the preceding term by a constant quantity (positive or negative).

The constant ratio is said to be the common ratio of the Geometric Progression and is denoted by dividing any term by that which immediately precedes it.

In other words, the sequence {a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), ..................., a\(_{n}\), ................. } is said to be in Geometric Progression, if \(\frac{a_{n + 1}}{a_{n}}\) = constant for all n ϵ N i.e., for all integral values of a, the ratio \(\frac{a_{n + 1}}{a_{n}}\) is constant.

Examples on Geometric Progression

1. The sequence 3, 15, 75, 375, 1875, .................... is a Geometric Progression, because \(\frac{15}{5}\) = \(\frac{75}{15}\) = \(\frac{375}{75}\) = \(\frac{1875}{375}\) = .................. = 5, which is constant.

Clearly, this sequence is a Geometric Progression with first term 3 and common ratio 5.


2. The sequence \(\frac{1}{3}\), -\(\frac{1}{2}\), \(\frac{3}{4}\), -\(\frac{9}{8}\), is a Geometric Progression with first term \(\frac{1}{3}\) and common ratio \(\frac{-\frac{1}{2}}{\frac{1}{3}}\) = -\(\frac{3}{2}\)

 

3. The sequence of numbers {4, 12, 36, 108, 324, ........... } forms a Geometric Progression whose common ratio is 3, because,

Second term (12) = 3 × First term (4),

Third term (36) = 3 × Second term (12),

Fourth term (108) = 3 × Third term (36),

Fifth term (324) = 3 × Fourth term (108) and so on.

In other words,

\(\frac{Second term (12)}{First term (4)}\) = \(\frac{Third term (36)}{Second term (12)}\) = \(\frac{Fourth term (108)}{Third term (36)}\) = \(\frac{Fifth term (324)}{Fourth term (108)}\) = ................. = 3 (a constant)


Solved example on Geometric Progression

Show that the sequence given by an = 3(2\(^{n}\)), for all n ϵ N, is a Geometric Progression. Also, find its common ratio.

Solution:

The given sequence is a\(_{n}\) = 3(2\(^{n}\))

Now putting n = n +1 in the given sequence we get,

a\(_{n + 1}\) = 3(2\(^{n + 1}\))

Now, \(\frac{a_{n + 1}}{a_{n}}\) = \(\frac{3(2^{n + 1})}{3(2^{n})}\) = 2

Therefore, we clearly see that for all integral values of n, the \(\frac{a_{n + 1}}{a_{n}}\) = 2 (constant). Thus, the given sequence is an Geometric Progression with common ratio 2.


Geometric Series:

If a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), ..............., a\(_{n}\), .......... is a Geometric Progression, then the expression a\(_{1}\) + a\(_{2}\) + a\(_{3}\) + ......... + a\(_{n}\) + .................... is called a geometric series.

Notes:

(i) The geometric series is finite according as the corresponding Geometric Progression consists of finite number of terms.

(ii) The geometric series is infinite according as the corresponding Geometric Progression consists of infinite number of terms.

 Geometric Progression





11 and 12 Grade Math 

From Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More