Geometric Progression

We will discuss here about the Geometric Progression along with examples.

A sequence of numbers is said to be Geometric Progression if the ratio of any term and its preceding term is always a constant quantity.


Definition of Geometric Progression:

A sequence of non-zero number is said to be in Geometric Progression (abbreviated as G.P.) if each term, after the first, is obtained by multiplying the preceding term by a constant quantity (positive or negative).

The constant ratio is said to be the common ratio of the Geometric Progression and is denoted by dividing any term by that which immediately precedes it.

In other words, the sequence {a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), ..................., a\(_{n}\), ................. } is said to be in Geometric Progression, if \(\frac{a_{n + 1}}{a_{n}}\) = constant for all n ϵ N i.e., for all integral values of a, the ratio \(\frac{a_{n + 1}}{a_{n}}\) is constant.

Examples on Geometric Progression

1. The sequence 3, 15, 75, 375, 1875, .................... is a Geometric Progression, because \(\frac{15}{5}\) = \(\frac{75}{15}\) = \(\frac{375}{75}\) = \(\frac{1875}{375}\) = .................. = 5, which is constant.

Clearly, this sequence is a Geometric Progression with first term 3 and common ratio 5.


2. The sequence \(\frac{1}{3}\), -\(\frac{1}{2}\), \(\frac{3}{4}\), -\(\frac{9}{8}\), is a Geometric Progression with first term \(\frac{1}{3}\) and common ratio \(\frac{-\frac{1}{2}}{\frac{1}{3}}\) = -\(\frac{3}{2}\)

 

3. The sequence of numbers {4, 12, 36, 108, 324, ........... } forms a Geometric Progression whose common ratio is 3, because,

Second term (12) = 3 × First term (4),

Third term (36) = 3 × Second term (12),

Fourth term (108) = 3 × Third term (36),

Fifth term (324) = 3 × Fourth term (108) and so on.

In other words,

\(\frac{Second term (12)}{First term (4)}\) = \(\frac{Third term (36)}{Second term (12)}\) = \(\frac{Fourth term (108)}{Third term (36)}\) = \(\frac{Fifth term (324)}{Fourth term (108)}\) = ................. = 3 (a constant)


Solved example on Geometric Progression

Show that the sequence given by an = 3(2\(^{n}\)), for all n ϵ N, is a Geometric Progression. Also, find its common ratio.

Solution:

The given sequence is a\(_{n}\) = 3(2\(^{n}\))

Now putting n = n +1 in the given sequence we get,

a\(_{n + 1}\) = 3(2\(^{n + 1}\))

Now, \(\frac{a_{n + 1}}{a_{n}}\) = \(\frac{3(2^{n + 1})}{3(2^{n})}\) = 2

Therefore, we clearly see that for all integral values of n, the \(\frac{a_{n + 1}}{a_{n}}\) = 2 (constant). Thus, the given sequence is an Geometric Progression with common ratio 2.


Geometric Series:

If a\(_{1}\), a\(_{2}\), a\(_{3}\), a\(_{4}\), ..............., a\(_{n}\), .......... is a Geometric Progression, then the expression a\(_{1}\) + a\(_{2}\) + a\(_{3}\) + ......... + a\(_{n}\) + .................... is called a geometric series.

Notes:

(i) The geometric series is finite according as the corresponding Geometric Progression consists of finite number of terms.

(ii) The geometric series is infinite according as the corresponding Geometric Progression consists of infinite number of terms.

 Geometric Progression





11 and 12 Grade Math 

From Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More