Properties of Multiplication of Integers

The properties of multiplication of integers are discussed with examples. All properties of multiplication of whole numbers also hold for integers.

The multiplication of integers possesses the following properties:

Property 1 (Closure property):

The product of two integers is always an integer.

That is, for any two integers m and n, m x n is an integer.


For example:

(i) 4 × 3 = 12, which is an integer.

(ii) 8 × (-5) = -40, which is an integer.

(iii) (-7) × (-5) = 35, which is an integer.

Property 2 (Commutativity property):

For any two integer’s m and n, we have

m × n = n × m

That is, multiplication of integers is commutative.


For example:

(i) 7 × (-3) = -(7 × 3) = -21 and (-3) × 7 = -(3 × 7) = -21

Therefore, 7 × (-3) = (-3) × 7

(ii) (-5) × (-8) = 5 × 8 = 40 and (-8) × (-5) = 8 × 5 = 40

Therefore, (-5) × (-8) = (-8) × (-5).



Property 3 (Associativity property):

The multiplication of integers is associative, i.e., for any three integers a, b, c, we have

a × ( b × c) = (a × b) × c


For example:

(i) (-3) × {4 × (-5)} = (-3) × (-20) = 3 × 20 = 60

and, {(-3) × 4} × (-5) = (-12) × (-5) = 12 × 5 = 60

Therefore, (- 3) × {4 × (-5)} = {(-3) × 4} × (-5)

(ii) (-2) × {(-3) × (-5)} = (-2) × 15 = -(2 × 15)= -30

and, {(-2) × (-3)} × (-5) = 6 × (-5) = -(6 × 5) = -30

Therefore, (- 2) × {(-3) × (-5)} = {-2) × (-3)} × (-5)



Property 4 (Distributivity of multiplication over addition property):

The multiplication of integers is distributive over their addition. That is, for any three integers a, b, c, we have

(i) a × (b + c) =a × b + a × c

(ii) (b + c) × a = b × a + c × a


For example:

(i) (-3) × {(-5) + 2} = (-3) × (-3) = 3 × 3 = 9

and, (-3) × (-5) + (-3) × 2 = (3 × 5 ) -( 3 × 2 ) = 15 - 6 = 9

Therefore, (-3) × {(-5) + 2 } = ( -3) × (-5) + (-3) × 2.

(ii) (-4) × {(-2) + (-3)) = (-4) × (-5) = 4 × 5 = 20

and, (-4) × (-2) + (-4) × (-3) = (4 × 2) + (4 × 3) = 8 + 12 = 20

Therefore, (-4) × {-2) + (-3)} = (-4) × (-2) + (-4) × (-3).

Note: A direct consequence of the distributivity of multiplication over addition is

a × (b - c) =a × b - a × c

Property 5 (Existence of multiplicative identity property):

For every integer a, we have

a × 1 = a = 1 × a

The integer 1 is called the multiplicative identity for integers.



Property 6 (Existence of multiplicative identity property):

For any integer, we have

a × 0 = 0 = 0 × a


For example:

(i) m × 0 = 0

(ii) 0 × y = 0



Property 7:

For any integer a, we have

a × (-1) = -a = (-1) × a

Note: (i) We know that -a is additive inverse or opposite of a. Thus, to find the opposite of inverse or negative of an integer, we multiply the integer by -1.


(ii) Since multiplication of integers is associative. Therefore, for any three integers a, b, c, we have

(a × b) × c = a × (b × c)

In what follows, we will write a × b × c for the equal products (a × b) × c and a × (b × c).


(iii) Since multiplication of integers is both commutative and associative. Therefore, in a product of three or more integers even if we rearrange the integers the product will not change.


(iv) When the number of negative integers in a product is odd, the product is negative.


(v) When the number of negative integers in a product is even, the product is positive.



Property 8

If x, y, z are integers, such that x > y, then

(i) x × z > y × z, if z is positive

(ii) x × z < y × z , if z is negative.


These are the properties of multiplication of integers needed to follow while solving the multiplication of integers.


 Numbers - Integers

Integers

Multiplication of Integers

Properties of Multiplication of Integers

Examples on Multiplication of Integers

Division of Integers

Absolute Value of an Integer

Comparison of Integers

Properties of Division of Integers

Examples on Division of Integers

Fundamental Operation

Examples on Fundamental Operations

Uses of Brackets

Removal of Brackets

Examples on Simplification


 Numbers - Worksheets

Worksheet on Multiplication of Integers

Worksheet on Division of Integers

Worksheet on Fundamental Operation

Worksheet on Simplification











7th Grade Math Problems 

From Properties of Multiplication of Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Fundamental Operations on Large Numbers Worksheet | 5th Grade Numbers

    Mar 14, 25 05:31 PM

    fundamental operations on large numbers worksheet

    Read More

  2. Word Problems on Division | Examples on Word Problems on Division

    Mar 13, 25 01:01 PM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  3. Division of Whole Numbers |Relation between Dividend, Divisor Quotient

    Mar 13, 25 12:41 PM

    Dividing Whole Numbers
    Relation between Dividend, Divisor, Quotient and Remainder is. Dividend = Divisor × Quotient + Remainder. To understand the relation between dividend, divisor, quotient and remainder let us follow the…

    Read More

  4. Adding 1-Digit Number | Understand the Concept one Digit Number |Video

    Mar 07, 25 03:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  5. Vertical Addition | How to Add 1-Digit Number Vertically? | Problems

    Mar 07, 25 02:35 PM

    Vertical Addition
    Now we will learn simple Vertical Addition of 1-digit number by arranging them one number under the other number. How to add 1-digit number vertically?

    Read More