Properties of Multiplication of Integers

The properties of multiplication of integers are discussed with examples. All properties of multiplication of whole numbers also hold for integers.

The multiplication of integers possesses the following properties:

Property 1 (Closure property):

The product of two integers is always an integer.

That is, for any two integers m and n, m x n is an integer.


For example:

(i) 4 × 3 = 12, which is an integer.

(ii) 8 × (-5) = -40, which is an integer.

(iii) (-7) × (-5) = 35, which is an integer.

Property 2 (Commutativity property):

For any two integer’s m and n, we have

m × n = n × m

That is, multiplication of integers is commutative.


For example:

(i) 7 × (-3) = -(7 × 3) = -21 and (-3) × 7 = -(3 × 7) = -21

Therefore, 7 × (-3) = (-3) × 7

(ii) (-5) × (-8) = 5 × 8 = 40 and (-8) × (-5) = 8 × 5 = 40

Therefore, (-5) × (-8) = (-8) × (-5).



Property 3 (Associativity property):

The multiplication of integers is associative, i.e., for any three integers a, b, c, we have

a × ( b × c) = (a × b) × c


For example:

(i) (-3) × {4 × (-5)} = (-3) × (-20) = 3 × 20 = 60

and, {(-3) × 4} × (-5) = (-12) × (-5) = 12 × 5 = 60

Therefore, (- 3) × {4 × (-5)} = {(-3) × 4} × (-5)

(ii) (-2) × {(-3) × (-5)} = (-2) × 15 = -(2 × 15)= -30

and, {(-2) × (-3)} × (-5) = 6 × (-5) = -(6 × 5) = -30

Therefore, (- 2) × {(-3) × (-5)} = {-2) × (-3)} × (-5)



Property 4 (Distributivity of multiplication over addition property):

The multiplication of integers is distributive over their addition. That is, for any three integers a, b, c, we have

(i) a × (b + c) =a × b + a × c

(ii) (b + c) × a = b × a + c × a


For example:

(i) (-3) × {(-5) + 2} = (-3) × (-3) = 3 × 3 = 9

and, (-3) × (-5) + (-3) × 2 = (3 × 5 ) -( 3 × 2 ) = 15 - 6 = 9

Therefore, (-3) × {(-5) + 2 } = ( -3) × (-5) + (-3) × 2.

(ii) (-4) × {(-2) + (-3)) = (-4) × (-5) = 4 × 5 = 20

and, (-4) × (-2) + (-4) × (-3) = (4 × 2) + (4 × 3) = 8 + 12 = 20

Therefore, (-4) × {-2) + (-3)} = (-4) × (-2) + (-4) × (-3).

Note: A direct consequence of the distributivity of multiplication over addition is

a × (b - c) =a × b - a × c

Property 5 (Existence of multiplicative identity property):

For every integer a, we have

a × 1 = a = 1 × a

The integer 1 is called the multiplicative identity for integers.



Property 6 (Existence of multiplicative identity property):

For any integer, we have

a × 0 = 0 = 0 × a


For example:

(i) m × 0 = 0

(ii) 0 × y = 0



Property 7:

For any integer a, we have

a × (-1) = -a = (-1) × a

Note: (i) We know that -a is additive inverse or opposite of a. Thus, to find the opposite of inverse or negative of an integer, we multiply the integer by -1.


(ii) Since multiplication of integers is associative. Therefore, for any three integers a, b, c, we have

(a × b) × c = a × (b × c)

In what follows, we will write a × b × c for the equal products (a × b) × c and a × (b × c).


(iii) Since multiplication of integers is both commutative and associative. Therefore, in a product of three or more integers even if we rearrange the integers the product will not change.


(iv) When the number of negative integers in a product is odd, the product is negative.


(v) When the number of negative integers in a product is even, the product is positive.



Property 8

If x, y, z are integers, such that x > y, then

(i) x × z > y × z, if z is positive

(ii) x × z < y × z , if z is negative.


These are the properties of multiplication of integers needed to follow while solving the multiplication of integers.


 Numbers - Integers

Integers

Multiplication of Integers

Properties of Multiplication of Integers

Examples on Multiplication of Integers

Division of Integers

Absolute Value of an Integer

Comparison of Integers

Properties of Division of Integers

Examples on Division of Integers

Fundamental Operation

Examples on Fundamental Operations

Uses of Brackets

Removal of Brackets

Examples on Simplification


 Numbers - Worksheets

Worksheet on Multiplication of Integers

Worksheet on Division of Integers

Worksheet on Fundamental Operation

Worksheet on Simplification











7th Grade Math Problems 

From Properties of Multiplication of Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More