# Point-slope Form of a Line

We will discuss here about the method of finding the point-slope form of a line.

To find the equation of a straight line passing through a fixed point and having a given slope,

let AB be the line passing through the point (x$$_{1}$$, y$$_{1}$$), and let the line be inclined at an angle θ with the positive direction of the x-axis.

Then, tan θ = m = slope.

Let the equation of the line be y = mx + c, ……………. (i)

where m is the slope of the line and c is the y-intercept. As A (x$$_{1}$$, y$$_{1}$$) is a point on the line AB (x$$_{1}$$, y$$_{1}$$) satisfy (i).

Therefore, y$$_{1}$$ = mx$$_{1}$$ + c ...................... (ii)

Subtracting (ii) from (i)

y – y$$_{1}$$ = m(x - x$$_{1}$$)

The equation of a line passing through(x$$_{1}$$, y$$_{1}$$) and having the slope m is y – y$$_{1}$$ = m(x – x$$_{1}$$)

For example:

The equation of a line passing through the point (0, 1) and inclined at 30° with the positive direction of the x-axis is y - 1 = tan 30° ∙ (x - 0) or y - 1 = $$\frac{x}{√3}$$

Notes:

(i) Equation of the y-axis:

The y-axis passes through the origin (0,0) and inclined at 90° with the positive direction of the x-axis.

So, the equation of the y-axis is y – 0 = tan 90° ∙ (x – 0)

⟹ y = ∞ ∙ x

⟹ $$\frac{y}{∞}$$ = x

⟹ x = 0

The coordinate of any point on the y-axis is (0, k), where k changes from point to point. Thus, the x-coordinate of any point on the y-axis is 0 and so the equation x = 0 is satisfied by the coordinates of any point on the y-axis. Therefore, the equation of the y-axis is x = 0.

(ii) Equation of a line parallel to the y-axis:

Let AB be a line parallel to the y-axis. Let the line be at a distance a from the y-axis. Then, the slope = tan 90° = ∞ and the line passes through the point (a, 0).

Therefore, the equation of AB is y – 0 = tan 90° ∙ (x – a)

or, y cot 90° = x - a

⟹ y × 0 = x - a

⟹ x - a = 0

⟹ x = a

2. Find the equation of the line inclined at 60° with the positive direction of the x-axis and passing through the point (-2, 5).

Solution:

The inclination of the line with the positive direction of the x-axis is 60°.

Therefore, the slope of the line = m = tan 60° = √3 and (x$$_{1}$$, y$$_{1}$$) = (-2, 5).

By the point slope form, the equation of the line is y - y$$_{1}$$ = m(x - x$$_{1}$$)

Substituting the value we get,

y - 5 = √3(x - (-2))

or, y - 5 = √3(x + 2)

or, y – 5 = √3x + 2√3

or, y = √3x + 2√3 + 5, which is the required equation.

Equation of a Straight Line

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

Apr 20, 24 05:39 PM

There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

2. ### What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

Apr 20, 24 05:29 PM

In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

3. ### Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

Apr 19, 24 04:01 PM

In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

4. ### Fundamental Geometrical Concepts | Point | Line | Properties of Lines

Apr 19, 24 01:50 PM

The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.