Point-slope Form of a Line

We will discuss here about the method of finding the point-slope form of a line.

To find the equation of a straight line passing through a fixed point and having a given slope,

let AB be the line passing through the point (x\(_{1}\), y\(_{1}\)), and let the line be inclined at an angle θ with the positive direction of the x-axis.

Then, tan θ = m = slope.

Let the equation of the line be y = mx + c, ……………. (i)

where m is the slope of the line and c is the y-intercept. As A (x\(_{1}\), y\(_{1}\)) is a point on the line AB (x\(_{1}\), y\(_{1}\)) satisfy (i).

Therefore, y\(_{1}\) = mx\(_{1}\) + c ...................... (ii)

Subtracting (ii) from (i)

y – y\(_{1}\) = m(x - x\(_{1}\))

The equation of a line passing through(x\(_{1}\), y\(_{1}\)) and having the slope m is y – y\(_{1}\) = m(x – x\(_{1}\))

For example:

The equation of a line passing through the point (0, 1) and inclined at 30° with the positive direction of the x-axis is y - 1 = tan 30° ∙ (x - 0) or y - 1 = \(\frac{x}{√3}\)


Notes:

(i) Equation of the y-axis:

The y-axis passes through the origin (0,0) and inclined at 90° with the positive direction of the x-axis.

So, the equation of the y-axis is y – 0 = tan 90° ∙ (x – 0)

⟹ y = ∞ ∙ x

⟹ \(\frac{y}{∞}\) = x

⟹ x = 0

The coordinate of any point on the y-axis is (0, k), where k changes from point to point. Thus, the x-coordinate of any point on the y-axis is 0 and so the equation x = 0 is satisfied by the coordinates of any point on the y-axis. Therefore, the equation of the y-axis is x = 0.


(ii) Equation of a line parallel to the y-axis:

Let AB be a line parallel to the y-axis. Let the line be at a distance a from the y-axis. Then, the slope = tan 90° = ∞ and the line passes through the point (a, 0).

Therefore, the equation of AB is y – 0 = tan 90° ∙ (x – a)

or, y cot 90° = x - a

⟹ y × 0 = x - a

⟹ x - a = 0

⟹ x = a


2. Find the equation of the line inclined at 60° with the positive direction of the x-axis and passing through the point (-2, 5).

Solution:

The inclination of the line with the positive direction of the x-axis is 60°.

Therefore, the slope of the line = m = tan 60° = √3 and (x\(_{1}\), y\(_{1}\)) = (-2, 5).

By the point slope form, the equation of the line is y - y\(_{1}\) = m(x - x\(_{1}\))

Substituting the value we get,

y - 5 = √3(x - (-2))

or, y - 5 = √3(x + 2)

or, y – 5 = √3x + 2√3

or, y = √3x + 2√3 + 5, which is the required equation.

 Equation of a Straight Line







10th Grade Math

From Point-slope Form of a Line to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More