Condition of Perpendicularity

We will discuss here about the condition of perpendicularity of two straight lines.

Let the lines AB and CD be perpendicular to each other. If the inclination of AB with the positive direction of the x-axis is θ then the inclination of CD with the positive direction of the x-axis will be 90° + θ.

Therefore, the slope of AB = tan θ, and

the slope of CD = tan (90° + θ).

From trigonometry, we have, tan (90° + θ) = - cot θ

Therefore, if the slope of AB is m\(_{1}\) and

the slope CD = m\(_{2}\) then 

m\(_{1}\) = tan θ and m\(_{2}\) = - cot θ.

So, m\(_{1}\) ∙ m\(_{2}\) = tan θ ∙ (- cot θ) = -1

Two lines with slopes m\(_{1}\) and m\(_{2}\) are perpendicular to each other if and only if m\(_{1}\) ∙ m\(_{2}\) = -1

Note: (i) By the definition, the x-axis is perpendicular to the y-axis.

(ii) By definition, any line parallel to the x-axis is perpendicular to any line parallel to the y-axis.

(iii) If the slope of a line is m then any line perpendicular to it will have the slope \(\frac{-1}{m}\) (i.e., negative reciprocal of m).

 

Solved example on Condition of perpendicularity of two lines:

Find the equation of the line passing through the point (-2, 0) and perpendicular to the line 4x – 3y = 2.

Solution:

First we need to express the given equation in the form y = mx + c.

Given equation is 4x – 3y = 2.

-3y = -4x + 2

y = \(\frac{4}{3}\)x - \(\frac{2}{3}\)

Therefore, the slope (m) of the given line = \(\frac{4}{3}\)

Let the slope of the required line be m\(_{1}\).

According to the problem the required line is perpendicular to the given line.

Therefore, from the condition of perpendicularity we get,

m\(_{1}\) ∙ \(\frac{4}{3}\) = -1

⟹ m\(_{1}\) = -\(\frac{3}{4}\)

Thus, the required line has the slope -\(\frac{3}{4}\) and it passes through the point (-2, 0).

Therefore, using the point-slope form we get

y - 0 = -\(\frac{3}{4}\){x - (-2)}

⟹ y = -\(\frac{3}{4}\)(x + 2)

⟹ 4y = -3(x + 2)

⟹ 4y = -3x + 6

⟹ 3x + 4y + 6 = 0, which is the required equation.

 Equation of a Straight Line







10th Grade Math

From Condition of Perpendicularity of Two Straight Lines to HOME


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Adding 5-digit Numbers with Regrouping | 5-digit Addition |Addition

    Mar 18, 24 02:31 PM

    Adding 5-digit Numbers with Regrouping
    We will learn adding 5-digit numbers with regrouping. We have learnt the addition of 4-digit numbers with regrouping and now in the same way we will do addition of 5-digit numbers with regrouping. We…

    Read More

  2. Adding 4-digit Numbers with Regrouping | 4-digit Addition |Addition

    Mar 18, 24 12:19 PM

    Adding 4-digit Numbers with Regrouping
    We will learn adding 4-digit numbers with regrouping. Addition of 4-digit numbers can be done in the same way as we do addition of smaller numbers. We first arrange the numbers one below the other in…

    Read More

  3. Worksheet on Adding 4-digit Numbers without Regrouping | Answers |Math

    Mar 16, 24 05:02 PM

    Missing Digits in Addition
    In worksheet on adding 4-digit numbers without regrouping we will solve the addition of 4-digit numbers without regrouping or without carrying, 4-digit vertical addition, arrange in columns and add an…

    Read More

  4. Adding 4-digit Numbers without Regrouping | 4-digit Addition |Addition

    Mar 15, 24 04:52 PM

    Adding 4-digit Numbers without Regrouping
    We will learn adding 4-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then add the digits under each column as shown in the following exa…

    Read More

  5. Addition of Three 3-Digit Numbers | With and With out Regrouping |Math

    Mar 15, 24 04:33 PM

    Addition of Three 3-Digit Numbers Without Regrouping
    Without regrouping: Adding three 3-digit numbers is same as adding two 3-digit numbers.

    Read More