Condition of Parallelism

We will discuss here about the condition of parallelism.

If two lines are parallel then they are inclined at the same angle θ with the positive direction of the x-axis. So, their slopes are equal.

Two lines with slopes m\(_{1}\) and m\(_{2}\) are parallel if and only if m\(_{1}\) = m\(_{2}\)

Note: If the slope of a line is m then any line parallel to it will also have the slope m.


Solved examples on condition of parallelism:

1. Prove that the lines 3x – 2y – 1 = 0 and 9x - 6y + 5 = 0 are parallel.

Solution:

The slope of the lines can be found by comparing the equations with y = mx + c.

Equation of the first straight line 3x – 2y – 1 = 0

Now we need to express the given equation in the form y = mx + c.

3x – 2y – 1 = 0

-2y = -3x + 1

y = \(\frac{-3}{-2}\)x + \(\frac{1}{-2}\)

y = \(\frac{3}{2}\)x - \(\frac{1}{2}\)

Therefore, the slope (m\(_{1}\)) of the given line = \(\frac{3}{2}\)

Equation of the second line 9x - 6y + 5 = 0

Now we need to express the given equation in the form y = mx + c.

9x - 6y + 5 = 0

-6y = -9x - 5

y = \(\frac{-9}{-6}\)x - \(\frac{5}{-6}\)

y = \(\frac{3}{2}\)x + \(\frac{5}{6}\)

Therefore, the slope (m\(_{2}\)) of the given line = \(\frac{3}{2}\)

Now we can clearly see that the slope of the first line m\(_{1}\) = the slope of the second line m\(_{2}\)

Therefore, the given two lines are parallel.


2. Find the value of k if the lines 7y = kx + 4 and x + 2y = 3 are parallel.

Solution:

The slope of the lines can be found by comparing the equations with y = mx + c.

Equation of the first straight line 7y = kx + 4

Now we need to express the given equation in the form y = mx + c.

7y = kx + 4

y = \(\frac{k}{7}\)x + \(\frac{4}{7}\)

Therefore, the slope (m\(_{1}\)) of the given line = \(\frac{k}{7}\)

Equation of the second line x + 2y = 3

Now we need to express the given equation in the form y = mx + c.

x + 2y = 3

2y = -x + 3

y = -\(\frac{1}{2}\)x + \(\frac{3}{2}\)

Therefore, the slope (m\(_{2}\)) of the given line = -\(\frac{1}{2}\)

Now according o the problem the two given lines are parallel.

i.e., m\(_{1}\) = m\(_{2}\)

\(\frac{k}{7}\) = -\(\frac{1}{2}\)

k = -\(\frac{7}{2}\)

Therefore, the value of k = -\(\frac{7}{2}\)

 Equation of a Straight Line







10th Grade Math

From Condition of Parallelism to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    Jan 17, 25 12:34 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Multiplying 2-Digit Numbers by 2-Digit Numbers |Multiplying by 2-Digit

    Jan 17, 25 01:46 AM

    Multiplying 2-Digit Numbers by 2-Digit Numbers
    We will learn how to multiply 2-digit numbers by 2-digit numbers.

    Read More

  3. Multiplying 3-Digit Numbers by 2-Digit Numbers | 3-Digit by 2-Digit

    Jan 17, 25 01:17 AM

    Multiplying 3-Digit Numbers by 2-Digit Numbers
    "We will learn how to multiply 3-digit numbers by 2-digit numbers.

    Read More

  4. 4-Digits by 1-Digit Multiplication |Multiply 4-Digit by 1-Digit Number

    Jan 17, 25 12:01 AM

    4-Digit by 1-Digit Multiply
    Here we will learn 4-digits by 1-digit multiplication. We know how to multiply three digit number by one digit number. In the same way we can multiply 4-digit numbers by 1-digit numbers without regrou…

    Read More

  5. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More