Condition of Parallelism

We will discuss here about the condition of parallelism.

If two lines are parallel then they are inclined at the same angle θ with the positive direction of the x-axis. So, their slopes are equal.

Two lines with slopes m\(_{1}\) and m\(_{2}\) are parallel if and only if m\(_{1}\) = m\(_{2}\)

Note: If the slope of a line is m then any line parallel to it will also have the slope m.


Solved examples on condition of parallelism:

1. Prove that the lines 3x – 2y – 1 = 0 and 9x - 6y + 5 = 0 are parallel.

Solution:

The slope of the lines can be found by comparing the equations with y = mx + c.

Equation of the first straight line 3x – 2y – 1 = 0

Now we need to express the given equation in the form y = mx + c.

3x – 2y – 1 = 0

-2y = -3x + 1

y = \(\frac{-3}{-2}\)x + \(\frac{1}{-2}\)

y = \(\frac{3}{2}\)x - \(\frac{1}{2}\)

Therefore, the slope (m\(_{1}\)) of the given line = \(\frac{3}{2}\)

Equation of the second line 9x - 6y + 5 = 0

Now we need to express the given equation in the form y = mx + c.

9x - 6y + 5 = 0

-6y = -9x - 5

y = \(\frac{-9}{-6}\)x - \(\frac{5}{-6}\)

y = \(\frac{3}{2}\)x + \(\frac{5}{6}\)

Therefore, the slope (m\(_{2}\)) of the given line = \(\frac{3}{2}\)

Now we can clearly see that the slope of the first line m\(_{1}\) = the slope of the second line m\(_{2}\)

Therefore, the given two lines are parallel.


2. Find the value of k if the lines 7y = kx + 4 and x + 2y = 3 are parallel.

Solution:

The slope of the lines can be found by comparing the equations with y = mx + c.

Equation of the first straight line 7y = kx + 4

Now we need to express the given equation in the form y = mx + c.

7y = kx + 4

y = \(\frac{k}{7}\)x + \(\frac{4}{7}\)

Therefore, the slope (m\(_{1}\)) of the given line = \(\frac{k}{7}\)

Equation of the second line x + 2y = 3

Now we need to express the given equation in the form y = mx + c.

x + 2y = 3

2y = -x + 3

y = -\(\frac{1}{2}\)x + \(\frac{3}{2}\)

Therefore, the slope (m\(_{2}\)) of the given line = -\(\frac{1}{2}\)

Now according o the problem the two given lines are parallel.

i.e., m\(_{1}\) = m\(_{2}\)

\(\frac{k}{7}\) = -\(\frac{1}{2}\)

k = -\(\frac{7}{2}\)

Therefore, the value of k = -\(\frac{7}{2}\)

 Equation of a Straight Line







10th Grade Math

From Condition of Parallelism to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Concept of Fractions |Concept of Half| Concept of One Fourth|Two Third

    Nov 06, 24 09:18 AM

    Half of a Collection
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. 2nd Grade Division Word Problems | Worksheet on Division Word Problems

    Nov 05, 24 01:49 PM

    Division Word Problems Grade 2

    Read More

  3. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 05, 24 09:15 AM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  4. 2nd Grade Division Worksheet | Dividing 2-digit by 1-digit Numbers

    Nov 05, 24 01:15 AM

    Division Fact 12 ÷ 3
    Dividing 2-digit by 1-digit Numbers

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Nov 05, 24 12:55 AM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More