Midpoint Formula

We will discuss here how to use the midpoint formula to find the middle point of a line segment joining the two co-ordinate points.

The coordinates of the midpoint M of a line segment AB with end points A (x\(_{1}\), y\(_{1}\)) and B (y\(_{2}\), y\(_{2}\)) are M (\(\frac{x_{1} + x_{2}}{2}\), \(\frac{y_{1} + y_{2}}{2}\)).

Let M be the midpoint of the line segment joining the points A (x\(_{1}\), y\(_{1}\)) and B (y\(_{2}\), y\(_{2}\)).

Then, M divides AB in the ratio 1 : 1.

So, by the section formula, the coordinates of M are (\(\frac{1\cdot x_{2} + 1\cdot x_{1}}{1 + 1}\)) i.e., (\(\frac{x_{1} + x_{2}}{2}\)).

Therefore, the coordinates of the midpoint of AB are (\(\frac{x_{1} + x_{2}}{2}\), \(\frac{y_{1} + y_{2}}{2}\)).

That is the middle point of the line segment joining the points (x\(_{1}\), y\(_{1}\)) and (y\(_{2}\), y\(_{2}\)) has the coordinates (\(\frac{x_{1} + x_{2}}{2}\), \(\frac{y_{1} + y_{2}}{2}\)).


Solved examples on midpoint formula:

1. Find the coordinates of the midpoint of the line segment joining the point A (-5, 4) and B (7, -8).

Solution:

Let M (x, y) be the midpoint of AB. Then, x = \(\frac{(-5) + 7}{2}\) = 1 and y = \(\frac{4 + (-8)}{2}\) = -2

Therefore, the required middle point is M (1, -2).


2. Let P (6, -3) be the middle point of the line segment AB, where A has the coordinates (-2, 0). Find the coordinate of B.

Solution:

Let the coordinates of B be (m, n). The middle point P on AB has the coordinates (\(\frac{(-2) + m}{2}\), \(\frac{0 + n}{2}\)).

But P has the coordinates (6, -3).

Therefore, \(\frac{(-2) + m}{2}\) = 6  and \(\frac{0 + n}{2}\) = -3

⟹ -2 + m = 12 and n = -6

⟹ m = 12 + 2 and n = -6

Therefore, the coordinates of B (14, -6)


3. Find the point A’ if the point A (-3, 4) on reflection in the point (1, -1) maps onto the point A’.

Solution:

Let A’ = (x, y). Clearly, (1, -1) is the middle point of AA’.

The middle point of AA’ = (\(\frac{x + (-3) }{2}\), \(\frac{y + 4}{2}\)) = (1, -1).

⟹ \(\frac{x - 3}{2}\) = 1  and \(\frac{y + 4}{2}\) = -1

⟹ x = 5 and y = -6

Therefore, the coordinate of the point A’ are (5, -6)

 Distance and Section Formulae






10th Grade Math

From Midpoint Formula to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:20 AM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  2. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  3. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  4. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More

  5. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More