Section Formula

We will proof the definition of section formula.

Section of a Line Segment

Let AB be a line segment joining the points A and B. Let P be any point on the line segment such that AP : PB = λ : 1

Section of a Line Segment

Then, we can say that P divides internally AB is the ratio λ : 1.

Note: If AP : PB = m : n then AP : PB = \(\frac{m}{n}\) : 1 (since m : n = \(\frac{m}{n}\) : \(\frac{n}{n}\). So, any section by P can be expressed as AP : PB = λ : 1

Definition of section formula: The coordinates (x, y) of a point P divides the line segment joining A (x\(_{1}\), y\(_{1}\)) and B (x\(_{2}\), y\(_{2}\)) internally in the ratio m : n (i.e., \(\frac{AP}{PB}\) = \(\frac{m}{n}\)) are given by

x = (\(\frac{mx_{2} + nx_{1}}{m + n}\), y = \(\frac{my_{2} + ny_{1}}{m + n}\))


Proof:

Let X’OX and YOY’ are the co-ordinate axes.

Let A (x\(_{1}\), y\(_{1}\)) and B (x\(_{2}\), y\(_{2}\)) be the end points of the given line segment AB.

Let P(x, y) be the point which divides AB in the ratio m : n.

Then, \(\frac{AP}{PB}\) = \(\frac{m}{n}\))

We want to find the coordinates (x, y) of P.

Draw AL ⊥ OX; BM ⊥ OX; PN ⊥ OX; AR ⊥ PN; and PS ⊥ BM

AL = y\(_{1}\), OL = x\(_{1}\), BM = y\(_{2}\), OM = x\(_{2}\), PN = y and ON = x.

By geometry,

AR = LN = ON – OL = (x - x\(_{1}\));

PS = NM = OM – ON = (x\(_{2}\) -  x);

PR = PN – RN = PN – AL = (y - y\(_{1}\))

BS = BM – SM = BM – PN = (y\(_{2}\) - y)

Clearly, we see that triangle ARP and triangle PSB are similar and, therefore, their sides are proportional.

Thus, \(\frac{AP}{PB}\) = \(\frac{AR}{PS}\) = \(\frac{PR}{BS}\)

⟹ \(\frac{m}{n}\) = \(\frac{x - x_{1}}{x_{2} - x}\) = \(\frac{y - y_{1}}{y_{2} - y}\)

⟹ \(\frac{m}{n}\) = \(\frac{x - x_{1}}{x_{2} - x}\) and \(\frac{m}{n}\) = \(\frac{y - y_{1}}{y_{2} - y}\)

⟹ (m + n)x = (mx\(_{2}\) + nx\(_{1}\)) and (m + n)y = (my\(_{2}\) + ny\(_{1}\))

⟹ x = (\(\frac{mx_{2} + nx_{1}}{m + n}\) and y = \(\frac{my_{2} + ny_{1}}{m + n}\))

Therefore, the co-ordinates of P are  (\(\frac{mx_{2} + nx_{1}}{m + n}\),  \(\frac{my_{2} + ny_{1}}{m + n}\)).

 Distance and Section Formulae






10th Grade Math

From Section Formula to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More