Distance Formula in Geometry

We will discuss here how to use the distance formula in geometry.

1. Show that the points A (8, 3), B (0, 9) and C (14, 11) are the vertices of an isosceles right-angled triangle.

Solution:

AB = \(\sqrt{(0 - 8)^{2} + (9 - 3)^{2}}\)

    = \(\sqrt{(-8)^{2} + (6)^{2}}\)

    = \(\sqrt{64 + 36}\)

    = \(\sqrt{100}\)

    = 10 units.

BC = \(\sqrt{(14 - 0)^{2} + (11 - 9)^{2}}\)

    = \(\sqrt{14^{2} + (2)^{2}}\)

    = \(\sqrt{196 + 4}\)

    = \(\sqrt{200}\)

    = 10√2 units.

 

CA = \(\sqrt{(8 - 14)^{2} + (3 - 11)^{2}}\)

     = \(\sqrt{(-6)^{2} + (-8)^{2}}\)

     = \(\sqrt{36 + 64}\)

    = \(\sqrt{100}\)

    = 10 units.

AB\(^{2}\) + CA\(^{2}\) = 100 + 100 = 200 = BC\(^{2}\)

BC\(^{2}\) = AB\(^{2}\) + CA\(^{2}\) ⟹ the triangle is right-angled triangle.

and, AB = CA ⟹ the triangle is isosceles.

Here, the triangle ABC is an isosceles right-angled triangle.

 

 

 

2. The point A (2, -4) is reflected in the origin on A’. The point B (-3, 2) is reflected in the x-axis on B’. Compare the distances AB = A’B’.

Solution:

The point A (2, -4) is reflected in the origin on A’.

Therefore, the co-ordinates of A’ = (-2, 4)

The point B (-3, 2) is reflected in the x-axis on B’

Therefore, the co-ordinates of B’ = (-3, -2)

Now, AB = \(\sqrt{(2 - (-3))^{2} + (-4 - 2)^{2}}\)

            = \(\sqrt{(5)^{2} + (-6)^{2}}\)

            = \(\sqrt{25 + 36}\)

            = \(\sqrt{61}\) units.

 

 

A’B’ = \(\sqrt{(-2 - (-3))^{2} + (4 - (-2))^{2}}\)

      =  \(\sqrt{1^{2} + 6^{2}}\)

      = \(\sqrt{1 + 36}\)

      = \(\sqrt{37}\) units.

 

3. Prove that the points A (1, 2), B (5, 4), C (3, 8) and D (-1, 6) are the vertices of a rectangle.

Solution:

Let A (1, 2), B (5, 4), C (3, 8) and D (-1, 6) be the angular points of the quadrilateral ABCD.

Join AC and BD.

Now AB = \(\sqrt{(5 - 1)^{2} + (4 - 2)^{2}}\)

           = \(\sqrt{4^{2} + 2^{2}}\)

           = \(\sqrt{16 + 4}\)

           = \(\sqrt{20}\)

           = \(\sqrt{2 × 2 × 5}\)

           = 2\(\sqrt{5}\) units.

BC = \(\sqrt{(3 - 5)^{2} + (8 - 4)^{2}}\)

     = \(\sqrt{(-2)^{2} + 4^{2}}\)

     = \(\sqrt{4 + 16}\)

     = \(\sqrt{20}\)

     = \(\sqrt{2 × 2 × 5}\)

     = 2\(\sqrt{5}\) units.

 

CD = \(\sqrt{(-1 - 3)^{2} + (6 - 8)^{2}}\)

     = \(\sqrt{(-4)^{2} + (-2)^{2}}\)

     = \(\sqrt{16 + 4}\)

     = \(\sqrt{20}\)

     = \(\sqrt{2 × 2 × 5}\)

     = 2\(\sqrt{5}\) units.

and DA = \(\sqrt{(1 + 1)^{2} + (2 - 6)^{2}}\)

           = \(\sqrt{2^{2} + (-4)^{2}}\)

           = \(\sqrt{4 + 16}\)

           = \(\sqrt{20}\)

           = \(\sqrt{2 × 2 × 5}\)

           = 2\(\sqrt{5}\) units.

Thus, AB = BC = CD = DA

Diagonal AC = \(\sqrt{(3 - 1)^{2} + (8 - 2)^{2}}\)

                 = \(\sqrt{2^{2} + (-6)^{2}}\)

                 = \(\sqrt{4 + 36}\)

                 = \(\sqrt{40}\)

                 = \(\sqrt{2 × 2 × 2 × 5}\)

                 = 2\(\sqrt{10}\) units.

 Diagonal BD = \(\sqrt{(-1 - 5)^{2} + (6 - 4)^{2}}\)

                 = \(\sqrt{(-6)^{2} + 2^{2}}\)

                 = \(\sqrt{36 + 4}\)

                 = \(\sqrt{40}\)

                 = \(\sqrt{2 × 2 × 2 × 5}\)

                 = 2\(\sqrt{10}\) units.

Therefore, Diagonal AC = Diagonal BD

Thus ABCD is a quadrilateral in which all sides are equal and the diagonals are equal.

Hence required ABCD is a square.

 Distance and Section Formulae


10th Grade Math

From Worksheet on Distance Formula to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More