Loading [MathJax]/jax/output/HTML-CSS/jax.js

Conditions of Collinearity of Three Points

We will discuss here how to prove the conditions of collinearity of three points.


Definition of Collinear Points:

Three or more points in a plane are said to be collinear if they all he on the same line.

Working Rules to Draw Collinear Points:

Step I: Draw a straight line ''.

Collinear Points

Step II: Mark points A, B, C, D, E on the straight line ''.

Thus, we have drawn the collinear points A, B, C, D and E on the line ''.


NOTE: If the points do not lie on the line, they are called non-collinear points.

Three points A, B and C are said to be collinear if they lie on the same straight line.

Collinear Points ABC

There points A, B and C will be collinear if AB + BC = AC as is clear from the above figure.

In general, three points A, B and C are collinear if the sum of the lengths of any two line segments among AB, BC and CA is equal to the length of the remaining line segment, that is,

either AB + BC = AC or AC + CB = AB or BA + AC = BC.

In other words,

There points A, B and C are collinear iff:

(i) AB + BC = AC i.e.,

Or, (ii) AB + AC = BC i.e. ,

Or, AC + BC = AB i.e.,


Solved examples to prove the collinearity of three points:

1. Prove that the points A (1, 1), B (-2, 7) and (3, -3) are collinear.

Solution:

Let A (1, 1), B (-2, 7) and C (3, -3) be the given points. Then,

AB = (21)2+(71)2 = (3)2+62 = 9+36 = 45 = 35 units.

BC = (3+2)2+(37)2 = 52+(10)2 = 25+100 = 125 = 55 units.

AC = (31)2+(31)2 = 22+(4)2 = 4+16 = 20 = 25 units.

Therefore, AB + AC = 35 + 25 units = 55 = BC

Thus, AB + AC = BC

Hence, the given points A, B, C are collinear.

 

2. Use the distance formula to show the points (1, -1), (6, 4) and (4, 2) are collinear.

Solution:

Let the points be A (1, -1), B (6, 4) and C (4, 2). Then,

AB = (61)2+(4+1)2 = 52+52 = 25+25 = 50 = 52

BC = (46)2+(24)2 = (2)2+(2)2 = 4+4 = 8 = 22

and

AC = (41)2+(2+1)2 = 32+32 = 9+9 = 18 = 32

⟹ BC + AC = 22 + 32 = 52 = AB

So, the points A, B and C are collinear with C lying between A and B.

 

3. Use the distance formula to show the points (2, 3), (8, 11) and (-1, -1) are collinear.

Solution:

Let the points be A (2, 3), B (8, 11) and C (-1, -1). Then,

AB = (28)2+(311)2 = 62+(8)2 = 36+64 = 100 = 10

BC = (8(1))2+(11(1))2 = 92+122 = 81+144 = 225 = 15

and

CA = ((1)2)2+((1)+3)2 = (3)2+(4)2 = 9+16 = 25 = 5

⟹ AB + CA = 10 + 5 = 15 = BC

Hence, the given points A, B, C are collinear.

 Distance and Section Formulae




10th Grade Math

From Conditions of Collinearity of Three Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More