Conditions of Collinearity of Three Points

We will discuss here how to prove the conditions of collinearity of three points.

Collinear points: Three points A, B and C are said to be collinear if they lie on the same straight line.

There points A, B and C will be collinear if AB + BC = AC as is clear from the adjoining figure.

In general, three points A, B and C are collinear if the sum of the lengths of any two line segments among AB, BC and CA is equal to the length of the remaining line segment, that is,

either AB + BC = AC or AC +CB = AB or BA + AC = BC.

In other words,

There points A, B and C are collinear iff:

(i) AB + BC = AC i.e.,

Or, (ii) AB + AC = BC i.e. ,

Or, AC + BC = AB i.e.,

Solved examples to prove the collinearity of three points:

1. Prove that the points A (1, 1), B (-2, 7) and (3, -3) are collinear.

Solution:

Let A (1, 1), B (-2, 7) and C (3, -3) be the given points. Then,

AB = \(\sqrt{(-2 - 1)^{2} + (7 - 1)^{2}}\) = \(\sqrt{(-3)^{2} + 6^{2}}\) = \(\sqrt{9 + 36}\) = \(\sqrt{45}\) = 3\(\sqrt{5}\) units.

BC = \(\sqrt{(3 + 2)^{2} + (-3 - 7)^{2}}\) = \(\sqrt{5^{2} + (-10)^{2}}\) = \(\sqrt{25 + 100}\) = \(\sqrt{125}\) = 5\(\sqrt{5}\) units.

AC = \(\sqrt{(3 - 1)^{2} + (-3 - 1)^{2}}\) = \(\sqrt{2^{2} + (-4)^{2}}\) = \(\sqrt{4 + 16}\) = \(\sqrt{20}\) = 2\(\sqrt{5}\) units.

Therefore, AB + AC = 3\(\sqrt{5}\) + 2\(\sqrt{5}\) units = 5\(\sqrt{5}\) = BC

Thus, AB + AC = BC

Hence, the given points A, B, C are collinear.

 

2. Use the distance formula to show the points (1, -1), (6, 4) and (4, 2) are collinear.

Solution:

Let the points be A (1, -1), B (6, 4) and C (4, 2). Then,

AB = \(\sqrt{(6 - 1)^{2} + (4 + 1)^{2}}\) = \(\sqrt{5^{2} + 5^{2}}\) = \(\sqrt{25 + 25}\) = \(\sqrt{50}\) = 5\(\sqrt{2}\)

BC = \(\sqrt{(4 - 6)^{2} + (2 - 4)^{2}}\) = \(\sqrt{(-2)^{2} + (-2)^{2}}\) = \(\sqrt{4 + 4}\) = \(\sqrt{8}\) = 2\(\sqrt{2}\)

and

AC = \(\sqrt{(4 - 1)^{2} + (2 + 1)^{2}}\) = \(\sqrt{3^{2} + 3^{2}}\) = \(\sqrt{9 + 9}\) = \(\sqrt{18}\) = 3\(\sqrt{2}\)

⟹ BC + AC = 2\(\sqrt{2}\) + 3\(\sqrt{2}\) = 5\(\sqrt{2}\) = AB

So, the points A, B and C are collinear with C lying between A and B.

 

3. Use the distance formula to show the points (2, 3), (8, 11) and (-1, -1) are collinear.

Solution:

Let the points be A (2, 3), B (8, 11) and C (-1, -1). Then,

AB = \(\sqrt{(2 - 8)^{2} + (3 - 11)^{2}}\) = \(\sqrt{6^{2} + (-8)^{2}}\) = \(\sqrt{36 + 64}\) = \(\sqrt{100}\) = 10

BC = \(\sqrt{(8 - (-1))^{2} + (11 - (-1))^{2}}\) = \(\sqrt{9^{2} + 12^{2}}\) = \(\sqrt{81 + 144}\) = \(\sqrt{225}\) = 15

and

CA = \(\sqrt{((-1) - 2)^{2} + ((-1) + 3)^{2}}\) = \(\sqrt{(-3)^{2} + (-4)^{2}}\) = \(\sqrt{9 + 16}\) = \(\sqrt{25}\) = 5

⟹ AB + CA = 10 + 5 = 15 = BC

Hence, the given points A, B, C are collinear.

 Distance and Section Formulae




10th Grade Math

From Conditions of Collinearity of Three Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Subtracting Integers | Subtraction of Integers |Fundamental Operations

    Jun 13, 24 02:51 AM

    Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

    Read More

  2. Properties of Subtracting Integers | Subtraction of Integers |Examples

    Jun 13, 24 02:28 AM

    The properties of subtracting integers are explained here along with the examples. 1. The difference (subtraction) of any two integers is always an integer. Examples: (a) (+7) – (+4) = 7 - 4 = 3

    Read More

  3. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Jun 13, 24 12:11 AM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  4. Addition of Integers | Adding Integers on a Number Line | Examples

    Jun 12, 24 01:11 PM

    Addition of Integers
    We will learn addition of integers using number line. We know that counting forward means addition. When we add positive integers, we move to the right on the number line. For example to add +2 and +4…

    Read More

  5. Worksheet on Adding Integers | Integers Worksheets | Answers |Addition

    Jun 11, 24 07:15 PM

    Worksheet on Adding Integers
    Practice the questions given in the worksheet on adding integers. We know that the sum of any two integers is always an integer. I. Add the following integers:

    Read More