Conditions of Collinearity of Three Points

We will discuss here how to prove the conditions of collinearity of three points.

Collinear points: Three points A, B and C are said to be collinear if they lie on the same straight line.

There points A, B and C will be collinear if AB + BC = AC as is clear from the adjoining figure.

In general, three points A, B and C are collinear if the sum of the lengths of any two line segments among AB, BC and CA is equal to the length of the remaining line segment, that is,

either AB + BC = AC or AC +CB = AB or BA + AC = BC.

In other words,

There points A, B and C are collinear iff:

(i) AB + BC = AC i.e.,

Or, (ii) AB + AC = BC i.e. ,

Or, AC + BC = AB i.e.,

Solved examples to prove the collinearity of three points:

1. Prove that the points A (1, 1), B (-2, 7) and (3, -3) are collinear.

Solution:

Let A (1, 1), B (-2, 7) and C (3, -3) be the given points. Then,

AB = \(\sqrt{(-2 - 1)^{2} + (7 - 1)^{2}}\) = \(\sqrt{(-3)^{2} + 6^{2}}\) = \(\sqrt{9 + 36}\) = \(\sqrt{45}\) = 3\(\sqrt{5}\) units.

BC = \(\sqrt{(3 + 2)^{2} + (-3 - 7)^{2}}\) = \(\sqrt{5^{2} + (-10)^{2}}\) = \(\sqrt{25 + 100}\) = \(\sqrt{125}\) = 5\(\sqrt{5}\) units.

AC = \(\sqrt{(3 - 1)^{2} + (-3 - 1)^{2}}\) = \(\sqrt{2^{2} + (-4)^{2}}\) = \(\sqrt{4 + 16}\) = \(\sqrt{20}\) = 2\(\sqrt{5}\) units.

Therefore, AB + AC = 3\(\sqrt{5}\) + 2\(\sqrt{5}\) units = 5\(\sqrt{5}\) = BC

Thus, AB + AC = BC

Hence, the given points A, B, C are collinear.

 

2. Use the distance formula to show the points (1, -1), (6, 4) and (4, 2) are collinear.

Solution:

Let the points be A (1, -1), B (6, 4) and C (4, 2). Then,

AB = \(\sqrt{(6 - 1)^{2} + (4 + 1)^{2}}\) = \(\sqrt{5^{2} + 5^{2}}\) = \(\sqrt{25 + 25}\) = \(\sqrt{50}\) = 5\(\sqrt{2}\)

BC = \(\sqrt{(4 - 6)^{2} + (2 - 4)^{2}}\) = \(\sqrt{(-2)^{2} + (-2)^{2}}\) = \(\sqrt{4 + 4}\) = \(\sqrt{8}\) = 2\(\sqrt{2}\)

and

AC = \(\sqrt{(4 - 1)^{2} + (2 + 1)^{2}}\) = \(\sqrt{3^{2} + 3^{2}}\) = \(\sqrt{9 + 9}\) = \(\sqrt{18}\) = 3\(\sqrt{2}\)

⟹ BC + AC = 2\(\sqrt{2}\) + 3\(\sqrt{2}\) = 5\(\sqrt{2}\) = AB

So, the points A, B and C are collinear with C lying between A and B.

 

3. Use the distance formula to show the points (2, 3), (8, 11) and (-1, -1) are collinear.

Solution:

Let the points be A (2, 3), B (8, 11) and C (-1, -1). Then,

AB = \(\sqrt{(2 - 8)^{2} + (3 - 11)^{2}}\) = \(\sqrt{6^{2} + (-8)^{2}}\) = \(\sqrt{36 + 64}\) = \(\sqrt{100}\) = 10

BC = \(\sqrt{(8 - (-1))^{2} + (11 - (-1))^{2}}\) = \(\sqrt{9^{2} + 12^{2}}\) = \(\sqrt{81 + 144}\) = \(\sqrt{225}\) = 15

and

CA = \(\sqrt{((-1) - 2)^{2} + ((-1) + 3)^{2}}\) = \(\sqrt{(-3)^{2} + (-4)^{2}}\) = \(\sqrt{9 + 16}\) = \(\sqrt{25}\) = 5

⟹ AB + CA = 10 + 5 = 15 = BC

Hence, the given points A, B, C are collinear.

 Distance and Section Formulae




10th Grade Math

From Conditions of Collinearity of Three Points to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Multiplication of a Number by a 3-Digit Number |3-Digit Multiplication

    Mar 28, 24 06:33 PM

    Multiplying by 3-Digit Number
    In multiplication of a number by a 3-digit number are explained here step by step. Consider the following examples on multiplication of a number by a 3-digit number: 1. Find the product of 36 × 137

    Read More

  2. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  3. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  4. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  5. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Mar 25, 24 04:18 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More