Conditions of Collinearity of Three Points

We will discuss here how to prove the conditions of collinearity of three points.


Definition of Collinear Points:

Three or more points in a plane are said to be collinear if they all he on the same line.

Working Rules to Draw Collinear Points:

Step I: Draw a straight line ''.

Collinear Points

Step II: Mark points A, B, C, D, E on the straight line ''.

Thus, we have drawn the collinear points A, B, C, D and E on the line ''.


NOTE: If the points do not lie on the line, they are called non-collinear points.

Three points A, B and C are said to be collinear if they lie on the same straight line.

Collinear Points ABC

There points A, B and C will be collinear if AB + BC = AC as is clear from the above figure.

In general, three points A, B and C are collinear if the sum of the lengths of any two line segments among AB, BC and CA is equal to the length of the remaining line segment, that is,

either AB + BC = AC or AC + CB = AB or BA + AC = BC.

In other words,

There points A, B and C are collinear iff:

(i) AB + BC = AC i.e.,

Or, (ii) AB + AC = BC i.e. ,

Or, AC + BC = AB i.e.,


Solved examples to prove the collinearity of three points:

1. Prove that the points A (1, 1), B (-2, 7) and (3, -3) are collinear.

Solution:

Let A (1, 1), B (-2, 7) and C (3, -3) be the given points. Then,

AB = \(\sqrt{(-2 - 1)^{2} + (7 - 1)^{2}}\) = \(\sqrt{(-3)^{2} + 6^{2}}\) = \(\sqrt{9 + 36}\) = \(\sqrt{45}\) = 3\(\sqrt{5}\) units.

BC = \(\sqrt{(3 + 2)^{2} + (-3 - 7)^{2}}\) = \(\sqrt{5^{2} + (-10)^{2}}\) = \(\sqrt{25 + 100}\) = \(\sqrt{125}\) = 5\(\sqrt{5}\) units.

AC = \(\sqrt{(3 - 1)^{2} + (-3 - 1)^{2}}\) = \(\sqrt{2^{2} + (-4)^{2}}\) = \(\sqrt{4 + 16}\) = \(\sqrt{20}\) = 2\(\sqrt{5}\) units.

Therefore, AB + AC = 3\(\sqrt{5}\) + 2\(\sqrt{5}\) units = 5\(\sqrt{5}\) = BC

Thus, AB + AC = BC

Hence, the given points A, B, C are collinear.

 

2. Use the distance formula to show the points (1, -1), (6, 4) and (4, 2) are collinear.

Solution:

Let the points be A (1, -1), B (6, 4) and C (4, 2). Then,

AB = \(\sqrt{(6 - 1)^{2} + (4 + 1)^{2}}\) = \(\sqrt{5^{2} + 5^{2}}\) = \(\sqrt{25 + 25}\) = \(\sqrt{50}\) = 5\(\sqrt{2}\)

BC = \(\sqrt{(4 - 6)^{2} + (2 - 4)^{2}}\) = \(\sqrt{(-2)^{2} + (-2)^{2}}\) = \(\sqrt{4 + 4}\) = \(\sqrt{8}\) = 2\(\sqrt{2}\)

and

AC = \(\sqrt{(4 - 1)^{2} + (2 + 1)^{2}}\) = \(\sqrt{3^{2} + 3^{2}}\) = \(\sqrt{9 + 9}\) = \(\sqrt{18}\) = 3\(\sqrt{2}\)

⟹ BC + AC = 2\(\sqrt{2}\) + 3\(\sqrt{2}\) = 5\(\sqrt{2}\) = AB

So, the points A, B and C are collinear with C lying between A and B.

 

3. Use the distance formula to show the points (2, 3), (8, 11) and (-1, -1) are collinear.

Solution:

Let the points be A (2, 3), B (8, 11) and C (-1, -1). Then,

AB = \(\sqrt{(2 - 8)^{2} + (3 - 11)^{2}}\) = \(\sqrt{6^{2} + (-8)^{2}}\) = \(\sqrt{36 + 64}\) = \(\sqrt{100}\) = 10

BC = \(\sqrt{(8 - (-1))^{2} + (11 - (-1))^{2}}\) = \(\sqrt{9^{2} + 12^{2}}\) = \(\sqrt{81 + 144}\) = \(\sqrt{225}\) = 15

and

CA = \(\sqrt{((-1) - 2)^{2} + ((-1) + 3)^{2}}\) = \(\sqrt{(-3)^{2} + (-4)^{2}}\) = \(\sqrt{9 + 16}\) = \(\sqrt{25}\) = 5

⟹ AB + CA = 10 + 5 = 15 = BC

Hence, the given points A, B, C are collinear.

 Distance and Section Formulae




10th Grade Math

From Conditions of Collinearity of Three Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 09:20 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More