Centroid of a Triangle

The Centroid of a triangle is the point of intersection of the medians of a triangle.

To find the centroid of a triangle

Let A (x\(_{1}\), y\(_{1}\)), B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)) are  the three vertices of the ∆ABC .

Let D be the midpoint of side BC.

Since, the coordinates of B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)), the coordinate of the point D are (\(\frac{x_{2} + x_{3}}{2}\), \(\frac{y_{2} + y_{3}}{2}\)).

Let G(x, y) be the centroid of the triangle ABC.

Then, from the geometry, G is on the median AD and it divides AD in the ratio 2 : 1, that is AG : GD = 2 : 1.

Therefore, x = \(\left \{\frac{2\cdot \frac{(x_{2} + x_{3})}{2} + 1 \cdot x_{1}}{2 + 1}\right \}\) = \(\frac{x_{1} + x _{2} + x_{3}}{3}\)

y = \(\left \{\frac{2\cdot \frac{(y_{2} + y_{3})}{2} + 1 \cdot y_{1}}{2 + 1}\right \}\) = \(\frac{y_{1} + y _{2} + y_{3}}{3}\)

Therefore, the coordinate of the G are (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\))

Hence, the centroid of a triangle whose vertices are (x\(_{1}\), y\(_{1}\)), (x\(_{2}\), y\(_{2}\)) and (x\(_{3}\), y\(_{3}\)) has the coordinates (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\)).


Note: The centroid of a triangle divides each median in the ratio 2 : 1 (vertex to base).


Solved examples to find the centroid of a triangle:

1. Find the co-ordinates of the point of intersection of the medians of trangle ABC; given A = (-2, 3), B = (6, 7) and C = (4, 1).

Solution:

Here, (x\(_{1}\)  = -2, y\(_{1}\) = 3), (x\(_{2}\)  = 6, y\(_{2}\) = 7) and  (x\(_{3}\)  = 4, y\(_{3}\) = 1),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{(-2) + 6 + 4}{3}\) = \(\frac{8}{3}\)

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{3 + 7 + 1}{3}\) = \(\frac{11}{3}\)

Therefore, the coordinates of the centroid G of the triangle ABC are (\(\frac{8}{3}\), \(\frac{11}{3}\))

Thus, the coordinates of the point of intersection of the medians of triangle are (\(\frac{8}{3}\), \(\frac{11}{3}\)).


2. The three vertices of the triangle ABC are (1, -4), (-2, 2) and (4, 5) respectively. Find the centroid and the length of the median through the vertex A.

Solution:

 Here, (x\(_{1}\)  = 1, y\(_{1}\) = -4), (x\(_{2}\)  = -2, y\(_{2}\) = 2) and  (x\(_{3}\)  = 4, y\(_{3}\) = 5),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{1 + (-2) + 4}{3}\) = \(\frac{3}{3}\) = 1

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{(-4) + 2 + 5}{3}\) = \(\frac{3}{3}\) = 1

Therefore, the coordinates of the centroid G of the triangle ABC are (1, 1).

D is the middle point of the side BC of the triangle ABC.

Therefore, the coordinates of D are (\(\frac{(-2) + 4}{2}\), \(\frac{2 + 5}{2}\)) = (1, \(\frac{7}{2}\))

Therefore, the length of the median AD = \(\sqrt{(1 - 1)^{2} + (-4 - \frac{7}{2})^{2}}\) = \(\frac{15}{2}\) units.


3. Two vertices of a triangle are (1, 4) and (3, 1). If the centroid of the triangle is the origin, find the third vertex.

Solution:

Let the coordinates of the third vertex are (h, k).

Therefore, the coordinates of the centroid of the triangle (\(\frac{1 + 3 + h}{3}\), \(\frac{4 + 1 + k}{3}\))

According to the problem we know that the centroid of the given triangle is (0, 0)

Therefore,

\(\frac{1 + 3 + h}{3}\) = 0 and \(\frac{4 + 1 + k}{3}\) = 0

⟹ h = -4 and k = -5

Therefore, the third vertex of the given triangle are (-4, -5).

 Distance and Section Formulae





10th Grade Math

From Centroid of a Triangle to HOME


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More