Centroid of a Triangle

The Centroid of a triangle is the point of intersection of the medians of a triangle.

To find the centroid of a triangle

Let A (x\(_{1}\), y\(_{1}\)), B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)) are  the three vertices of the ∆ABC .

Let D be the midpoint of side BC.

Since, the coordinates of B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)), the coordinate of the point D are (\(\frac{x_{2} + x_{3}}{2}\), \(\frac{y_{2} + y_{3}}{2}\)).

Let G(x, y) be the centroid of the triangle ABC.

Then, from the geometry, G is on the median AD and it divides AD in the ratio 2 : 1, that is AG : GD = 2 : 1.

Therefore, x = \(\left \{\frac{2\cdot \frac{(x_{2} + x_{3})}{2} + 1 \cdot x_{1}}{2 + 1}\right \}\) = \(\frac{x_{1} + x _{2} + x_{3}}{3}\)

y = \(\left \{\frac{2\cdot \frac{(y_{2} + y_{3})}{2} + 1 \cdot y_{1}}{2 + 1}\right \}\) = \(\frac{y_{1} + y _{2} + y_{3}}{3}\)

Therefore, the coordinate of the G are (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\))

Hence, the centroid of a triangle whose vertices are (x\(_{1}\), y\(_{1}\)), (x\(_{2}\), y\(_{2}\)) and (x\(_{3}\), y\(_{3}\)) has the coordinates (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\)).


Note: The centroid of a triangle divides each median in the ratio 2 : 1 (vertex to base).


Solved examples to find the centroid of a triangle:

1. Find the co-ordinates of the point of intersection of the medians of trangle ABC; given A = (-2, 3), B = (6, 7) and C = (4, 1).

Solution:

Here, (x\(_{1}\)  = -2, y\(_{1}\) = 3), (x\(_{2}\)  = 6, y\(_{2}\) = 7) and  (x\(_{3}\)  = 4, y\(_{3}\) = 1),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{(-2) + 6 + 4}{3}\) = \(\frac{8}{3}\)

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{3 + 7 + 1}{3}\) = \(\frac{11}{3}\)

Therefore, the coordinates of the centroid G of the triangle ABC are (\(\frac{8}{3}\), \(\frac{11}{3}\))

Thus, the coordinates of the point of intersection of the medians of triangle are (\(\frac{8}{3}\), \(\frac{11}{3}\)).


2. The three vertices of the triangle ABC are (1, -4), (-2, 2) and (4, 5) respectively. Find the centroid and the length of the median through the vertex A.

Solution:

 Here, (x\(_{1}\)  = 1, y\(_{1}\) = -4), (x\(_{2}\)  = -2, y\(_{2}\) = 2) and  (x\(_{3}\)  = 4, y\(_{3}\) = 5),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{1 + (-2) + 4}{3}\) = \(\frac{3}{3}\) = 1

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{(-4) + 2 + 5}{3}\) = \(\frac{3}{3}\) = 1

Therefore, the coordinates of the centroid G of the triangle ABC are (1, 1).

D is the middle point of the side BC of the triangle ABC.

Therefore, the coordinates of D are (\(\frac{(-2) + 4}{2}\), \(\frac{2 + 5}{2}\)) = (1, \(\frac{7}{2}\))

Therefore, the length of the median AD = \(\sqrt{(1 - 1)^{2} + (-4 - \frac{7}{2})^{2}}\) = \(\frac{15}{2}\) units.


3. Two vertices of a triangle are (1, 4) and (3, 1). If the centroid of the triangle is the origin, find the third vertex.

Solution:

Let the coordinates of the third vertex are (h, k).

Therefore, the coordinates of the centroid of the triangle (\(\frac{1 + 3 + h}{3}\), \(\frac{4 + 1 + k}{3}\))

According to the problem we know that the centroid of the given triangle is (0, 0)

Therefore,

\(\frac{1 + 3 + h}{3}\) = 0 and \(\frac{4 + 1 + k}{3}\) = 0

⟹ h = -4 and k = -5

Therefore, the third vertex of the given triangle are (-4, -5).

 Distance and Section Formulae





10th Grade Math

From Centroid of a Triangle to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 27, 25 03:02 AM

    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. 5th Grade Math Worksheets | 5th Grade Homework Sheets | Math Worksheet

    Mar 27, 25 02:46 AM

    5th grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 5th Grade Relation Between HCF and LCM | Solved Examples | Worksheet

    Mar 27, 25 02:34 AM

    Here we will discuss about the relationship between hcf and lcm of two numbers. Product of two numbers = Product of H.C.F. and L.C.M. of the numbers. Solved Examples on 5th Grade Relation Between HCF…

    Read More

  4. 5th Grade Word Problems on H.C.F. and L.C.M. | Worksheet with Answers

    Mar 27, 25 02:33 AM

    L.C.M. of 8, 24 and 32 by Long Division Method
    Here we will solve different types of word Problems on H.C.F. and L.C.M. Find the smallest number which when divided by 8, 24 and 32 when leaves 7 as remainder in each. 1. Find the lowest number which…

    Read More

  5. Divisible by 3 | Test of Divisibility by 3 |Rules of Divisibility by 3

    Mar 26, 25 11:08 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More