Centroid of a Triangle

The Centroid of a triangle is the point of intersection of the medians of a triangle.

To find the centroid of a triangle

Let A (x\(_{1}\), y\(_{1}\)), B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)) are  the three vertices of the ∆ABC .

Let D be the midpoint of side BC.

Since, the coordinates of B (x\(_{2}\), y\(_{2}\)) and C (x\(_{3}\), y\(_{3}\)), the coordinate of the point D are (\(\frac{x_{2} + x_{3}}{2}\), \(\frac{y_{2} + y_{3}}{2}\)).

Let G(x, y) be the centroid of the triangle ABC.

Then, from the geometry, G is on the median AD and it divides AD in the ratio 2 : 1, that is AG : GD = 2 : 1.

Therefore, x = \(\left \{\frac{2\cdot \frac{(x_{2} + x_{3})}{2} + 1 \cdot x_{1}}{2 + 1}\right \}\) = \(\frac{x_{1} + x _{2} + x_{3}}{3}\)

y = \(\left \{\frac{2\cdot \frac{(y_{2} + y_{3})}{2} + 1 \cdot y_{1}}{2 + 1}\right \}\) = \(\frac{y_{1} + y _{2} + y_{3}}{3}\)

Therefore, the coordinate of the G are (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\))

Hence, the centroid of a triangle whose vertices are (x\(_{1}\), y\(_{1}\)), (x\(_{2}\), y\(_{2}\)) and (x\(_{3}\), y\(_{3}\)) has the coordinates (\(\frac{x_{1} + x _{2} + x_{3}}{3}\), \(\frac{y_{1} + y _{2} + y_{3}}{3}\)).


Note: The centroid of a triangle divides each median in the ratio 2 : 1 (vertex to base).


Solved examples to find the centroid of a triangle:

1. Find the co-ordinates of the point of intersection of the medians of trangle ABC; given A = (-2, 3), B = (6, 7) and C = (4, 1).

Solution:

Here, (x\(_{1}\)  = -2, y\(_{1}\) = 3), (x\(_{2}\)  = 6, y\(_{2}\) = 7) and  (x\(_{3}\)  = 4, y\(_{3}\) = 1),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{(-2) + 6 + 4}{3}\) = \(\frac{8}{3}\)

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{3 + 7 + 1}{3}\) = \(\frac{11}{3}\)

Therefore, the coordinates of the centroid G of the triangle ABC are (\(\frac{8}{3}\), \(\frac{11}{3}\))

Thus, the coordinates of the point of intersection of the medians of triangle are (\(\frac{8}{3}\), \(\frac{11}{3}\)).


2. The three vertices of the triangle ABC are (1, -4), (-2, 2) and (4, 5) respectively. Find the centroid and the length of the median through the vertex A.

Solution:

 Here, (x\(_{1}\)  = 1, y\(_{1}\) = -4), (x\(_{2}\)  = -2, y\(_{2}\) = 2) and  (x\(_{3}\)  = 4, y\(_{3}\) = 5),

Let G (x, y) be the centroid of the triangle ABC. Then,

x = \(\frac{x_{1} + x _{2} + x_{3}}{3}\) = \(\frac{1 + (-2) + 4}{3}\) = \(\frac{3}{3}\) = 1

y = \(\frac{y_{1} + y _{2} + y_{3}}{3}\) = \(\frac{(-4) + 2 + 5}{3}\) = \(\frac{3}{3}\) = 1

Therefore, the coordinates of the centroid G of the triangle ABC are (1, 1).

D is the middle point of the side BC of the triangle ABC.

Therefore, the coordinates of D are (\(\frac{(-2) + 4}{2}\), \(\frac{2 + 5}{2}\)) = (1, \(\frac{7}{2}\))

Therefore, the length of the median AD = \(\sqrt{(1 - 1)^{2} + (-4 - \frac{7}{2})^{2}}\) = \(\frac{15}{2}\) units.


3. Two vertices of a triangle are (1, 4) and (3, 1). If the centroid of the triangle is the origin, find the third vertex.

Solution:

Let the coordinates of the third vertex are (h, k).

Therefore, the coordinates of the centroid of the triangle (\(\frac{1 + 3 + h}{3}\), \(\frac{4 + 1 + k}{3}\))

According to the problem we know that the centroid of the given triangle is (0, 0)

Therefore,

\(\frac{1 + 3 + h}{3}\) = 0 and \(\frac{4 + 1 + k}{3}\) = 0

⟹ h = -4 and k = -5

Therefore, the third vertex of the given triangle are (-4, -5).

 Distance and Section Formulae





10th Grade Math

From Centroid of a Triangle to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Subtracting Integers | Subtraction of Integers |Fundamental Operations

    Jun 13, 24 02:51 AM

    Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

    Read More

  2. Properties of Subtracting Integers | Subtraction of Integers |Examples

    Jun 13, 24 02:28 AM

    The properties of subtracting integers are explained here along with the examples. 1. The difference (subtraction) of any two integers is always an integer. Examples: (a) (+7) – (+4) = 7 - 4 = 3

    Read More

  3. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Jun 13, 24 12:11 AM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  4. Addition of Integers | Adding Integers on a Number Line | Examples

    Jun 12, 24 01:11 PM

    Addition of Integers
    We will learn addition of integers using number line. We know that counting forward means addition. When we add positive integers, we move to the right on the number line. For example to add +2 and +4…

    Read More

  5. Worksheet on Adding Integers | Integers Worksheets | Answers |Addition

    Jun 11, 24 07:15 PM

    Worksheet on Adding Integers
    Practice the questions given in the worksheet on adding integers. We know that the sum of any two integers is always an integer. I. Add the following integers:

    Read More