Distance Formula

We will discuss here how to find the distance between two points in a plane using the distance formula. As, we know the coordinates of two points in a plain fix the positions of the points in the plane and also the distance between them. The distance and the coordinates of the two points are related by an algebraic relation which can be deduced as shown below.

Let M (x\(_{1}\), y\(_{1}\)) and N (x\(_{2}\), y\(_{2}\)) are the two points in the plane. OX and OY being the rectangular axes of reference. Let MN = d. Draw MP ⊥ OX,  NQ ⊥ OX and MR ⊥ NQ

Distance Formula

According to the definition of the co-ordinates,

OP = x\(_{1}\), MP = y\(_{1}\), OQ = x\(_{2}\), NQ = y\(_{2}\)

From geometry, MR = PQ = OQ - OP = x\(_{2}\)  - x\(_{1}\), and

NR = NQ - RQ = NQ - MP = y\(_{2}\) - y\(_{1}\).

In the right-angled triangle MRN,

MN\(^{2}\) = MR\(^{2}\) + NR\(^{2}\)

or, d\(^{2}\) = (x\(_{2}\)  - x\(_{1}\))\(^{2}\) + (y\(_{2}\) - y\(_{1}\))\(^{2}\)

Therefore, d = \(\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}\)

The distance between two points (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) = \(\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}\)

= \(\sqrt{(difference  of x-coordinates)^{2} + (difference  of y-coordinates)^{2}}\)

The above formula is known as the distance formula.


Solved example to find the distance between two points in a plane:

Find the distance between the two points (2, 3) and (-1, -1).

 = \(\sqrt{(-1 - 2)^{2} + (-1 - 3)^{2}}\)

= \(\sqrt{(-3)^{2} + (-4)^{2}}\)

= \(\sqrt{9 + 16}\)

= \(\sqrt{25}\)

= 5

That is 5 units.


Note:

(i) The distance between two points is always positive.

(ii) The distance of a point (x, y) from the origin (0, 0) = \(\sqrt{(x - 0)^{2} + (y - 0)^{2}}\) = \(\sqrt{x^{2} + y^{2}}\)

(iii) The distance formula d\(^{2}\) = (x\(_{2}\)  - x\(_{1}\))\(^{2}\) + (y\(_{2}\) - y\(_{1}\))\(^{2}\) should be understood as an algebraic relation between five variables x\(_{1}\), y\(_{1}\), x\(_{2}\), y\(_{2}\) and d. Given any four of them, the fifth variable can be known.

 Distance and Section Formulae



10th Grade Math

From Distance Formula to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More