Distance Formula

We will discuss here how to find the distance between two points in a plane using the distance formula. As, we know the coordinates of two points in a plain fix the positions of the points in the plane and also the distance between them. The distance and the coordinates of the two points are related by an algebraic relation which can be deduced as shown below.

Let M (x\(_{1}\), y\(_{1}\)) and N (x\(_{2}\), y\(_{2}\)) are the two points in the plane. OX and OY being the rectangular axes of reference. Let MN = d. Draw MP ⊥ OX,  NQ ⊥ OX and MR ⊥ NQ

Distance Formula

According to the definition of the co-ordinates,

OP = x\(_{1}\), MP = y\(_{1}\), OQ = x\(_{2}\), NQ = y\(_{2}\)

From geometry, MR = PQ = OQ - OP = x\(_{2}\)  - x\(_{1}\), and

NR = NQ - RQ = NQ - MP = y\(_{2}\) - y\(_{1}\).

In the right-angled triangle MRN,

MN\(^{2}\) = MR\(^{2}\) + NR\(^{2}\)

or, d\(^{2}\) = (x\(_{2}\)  - x\(_{1}\))\(^{2}\) + (y\(_{2}\) - y\(_{1}\))\(^{2}\)

Therefore, d = \(\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}\)

The distance between two points (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) = \(\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}\)

= \(\sqrt{(difference  of x-coordinates)^{2} + (difference  of y-coordinates)^{2}}\)

The above formula is known as the distance formula.


Solved example to find the distance between two points in a plane:

Find the distance between the two points (2, 3) and (-1, -1).

 = \(\sqrt{(-1 - 2)^{2} + (-1 - 3)^{2}}\)

= \(\sqrt{(-3)^{2} + (-4)^{2}}\)

= \(\sqrt{9 + 16}\)

= \(\sqrt{25}\)

= 5

That is 5 units.


Note:

(i) The distance between two points is always positive.

(ii) The distance of a point (x, y) from the origin (0, 0) = \(\sqrt{(x - 0)^{2} + (y - 0)^{2}}\) = \(\sqrt{x^{2} + y^{2}}\)

(iii) The distance formula d\(^{2}\) = (x\(_{2}\)  - x\(_{1}\))\(^{2}\) + (y\(_{2}\) - y\(_{1}\))\(^{2}\) should be understood as an algebraic relation between five variables x\(_{1}\), y\(_{1}\), x\(_{2}\), y\(_{2}\) and d. Given any four of them, the fifth variable can be known.

 Distance and Section Formulae



10th Grade Math

From Distance Formula to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More