Problems on Quadratic Equations

We will discuss here about some of the problems on quadratic equations.

1. Solve: x^2 = 36

x^2 = 36

or, x^2 - 36=0

or, (x + 6)(x - 6) = 0

So, one of x + 6 and x - 6 must be zero

From x + 6 = 0, we get x = -6

From x - 6 = 0, we get x = 6

Thus, the required solutions are x = ± 6

Keeping the expression involving the unknown quantity and the constant term on left and right side respectively and finding square root from both sides, we can solve the equation also.

As in the equation x^2 = 36, finding square root from both sides, we get x = ± 6.


2.  Solve 2x^2 - 5x + 3 = 0

2x^2 - 5x + 3 = 0

or 2x^2 - 3x – 2x + 3=0

or, x (2x - 3) - 1 (2x - 3)=0

or, (x - 1)(2x - 3) = 0

Therefore, one of (x - 1) and (2x - 3) must be zero.

when, x - 1 = 0, x = 1

and when 2x - 3 = 0, x = 3/2

Thus required solutions are x = 1, 3/2

 

3. Solve: 3x^2 - x = 10

3x^2 - x = 10

or, 3x^2 - x - 10 = 0

or, 3x^2 - 6x + 5x - 10 = 0

or, 3x (x - 2) + 5 (x - 2) =0

or, (x - 2)(3x + 5) = 0

Therefore, one of x - 2 and 3x + 5 must be zero

When x - 2 = 0, x = 2

and when 3x + 5 = 0; 3x = -5 or; x = -5/3

Therefore, required solutions are x= -5/3, 2

 

4. Solve: (x - 7)(x - 9) = 195

(x - 7)(x - 9) = 195

or, x^2 - 9x – 7x + 63 – 195 = O

or, x2 - 16x - 132=0

or, x^2 - 22 x + 6x - 132=0

or, x(x - 22) + 6(x - 22) = 0

or, (x - 22)(x + 6) = 0

Therefore, one of x - 22 and x + 6 must be zero.

When x - 22, x = 22

when x + 6 = 0, x = - 6

Required solutions are x= -6, 22



5. Solve: x/3 +3/x =  4 1/4

or, x2 + 9/3x = 17/4

or, 4x2 + 36 = 51x

or, 4x^2 - 51x + 36 = 0

or, 4x^2 - 48x - 3x + 36 = 0

or, 4x(x- 12) -3(x - 12) = 0

or, (x - 12)(4x -3) = 0

Therefore, one of (x - 12) and (4x - 3) must be zero.

When x - 12 = 0, x = 12 when 4x -3 = 0,x = 3/4


6. Solve: x - 3/x + 3 - x + 3/x - 3 + 6 6/7 = 0

Assuming x - 3/x + 3 = a, the given equation can be written as:

a - 1/a + 6 6/7 = 0

or, a2 - 1/a + 48/7 = 0

or, a2 - 1/a = - 48/7

or, 7a^2 - 7 = - 48a

or, 7a^2 + 48a - 7 = 0

or,7a^2 + 49a - a - 7 = 0

or, 7a(a + 7) - 1 (a + 7) = 0

or,(a + 7)(7a - 1) = 0

Therefore, 0ne of (a + 7) and (7a - 1) must be zero.

a + 7 = 0 gives a = -7 and 7a - 1 = 0 gives a = 1/7

From a = -7 we get x -3/x + 3 = -7

or, x – 3 = -7x - 2 1

or, 8x = -18

Therefore, x = -18/8 = - 9/4

Again, from a = 1/7, we get x - 3/x + 3 = 1/ 7

or, 7x - 21 = x + 3

or,6x = 24

Therefore, x = 4

Required solutions are x = -9/4, 4

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring








9th Grade Math

From Problems on Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More