Divide a Number into Three Parts in a Given Ratio

To divide a number into three parts in a given ratio

Let the number be p. It is to be divided into three parts in the ratio a : b : c.

Let the parts be x, y and z. Then, x + y + z = p .................... (i)

                                                and        x = ak, y =bk, z = ck.................... (ii)

Substituting in (i), ak + bk + ck = p

  ⟹ k(a + b + c) = p

Therefore, k = \(\frac{p}{a + b + c}\)

Therefore, x = ak = \(\frac{ap}{a+ b + c}\), y = bk = \(\frac{bp}{a+ b + c}\), z = ck = \(\frac{cp}{a+ b + c}\).

The three parts of p in the ratio a : b : c are

\(\frac{ap}{a+ b + c}\), \(\frac{bp}{a+ b + c}\), \(\frac{cp}{a+ b + c}\).


Solved examples on dividing a number into three parts in a given ratio:

1. Divide 297 into three parts that are in the ratio 5 : 13 : 15

Solution:

The three parts are \(\frac{5}{5 + 13 + 15}\) ∙ 297, \(\frac{13}{5 + 13 + 15}\) ∙ 297 and \(\frac{15}{5 + 13 + 15}\) ∙ 297

 i.e., \(\frac{5}{33}\) ∙ 297, \(\frac{13}{33}\) ∙ 297 and \(\frac{15}{33}\) ∙ 297 i.e., 45, 117 and 135.

 

2. Divide 432 into three parts that are in the ratio 1 : 2 : 3

Solution:

The three parts are \(\frac{1}{1 + 2 + 3}\) ∙ 432, \(\frac{2}{1 + 2 + 3}\) ∙ 432 and \(\frac{3}{1 + 2 + 3}\) ∙ 432

i.e., \(\frac{1}{6}\) ∙ 432, \(\frac{2}{6}\) ∙ 432 and \(\frac{3}{6}\) ∙ 432

i.e., 72, 144 and 216.

 

3. Divide 80 into three parts that are in the ratio 1 : 3 : 4.

Solution:

The three parts are \(\frac{1}{1 + 3 + 4}\) ∙ 80, \(\frac{3}{1 + 3 + 4}\) ∙ 80 and \(\frac{4}{1 + 3 + 4}\) ∙ 80

i.e., \(\frac{1}{8}\) ∙ 80, \(\frac{3}{8}\) ∙ 80 and \(\frac{4}{8}\) ∙ 80

i.e., 10, 30 and 40.


● Ratio and proportion





10th Grade Math

From Divide a Number into Three Parts in a Given Ratio to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.