Mean and Third Proportional

We will learn how to find the mean and third proportional of the set of three numbers.

If x, y and z are in continued proportion then y is called the mean proportional (or geometric mean) of x and z.

If y is the mean proportional of x and z, y^2 = xz, i.e., y = +\(\sqrt{xz}\).

For example, the mean proportion of 4 and 16 = +\(\sqrt{4 × 16}\)  = +\(\sqrt{64}\) = 8

If x, y and z are in continued proportion then z is called the third proportional.

For example, the third proportional of 4, 8 is 16.

 

Solved examples on understanding mean and third proportional

1. Find the third proportional to 2.5 g and 3.5 g.

Solution:

Therefore, 2.5, 3.5 and x are in continuous proportion.

 \(\frac{2.5}{3.5}\) = \(\frac{3.5}{x}\)

⟹ 2.5x = 3.5 × 3.5

⟹ x = \(\frac{3.5 × 3.5}{2.5}\)

⟹ x = 4.9 g


2. Find the mean proportional of 3 and 27.

Solution:

The mean proportional of 3 and 27 = +\(\sqrt{3 × 27}\) = +\(\sqrt{81}\) = 9.

 

3. Find the mean between 6 and 0.54.

Solution:

The mean proportional of 6 and 0.54 = +\(\sqrt{6 × 0.54}\) = +\(\sqrt{3.24}\) = 1.8

 

4. If two extreme terms of three continued proportional numbers be pqr, \(\frac{pr}{q}\); what is the mean proportional?

Solution:

Let the middle term be x

Therefore, \(\frac{pqr}{x}\) = \(\frac{x}{\frac{pr}{q}}\)

⟹ x\(^{2}\) = pqr × \(\frac{pr}{q}\) = p\(^{2}\)r\(^{2}\)

⟹ x = \(\sqrt{p^{2}r^{2}}\) = pr

Therefore, the mean proportional is pr.

 

5. Find the third proportional of 36 and 12.

Solution:

If x is the third proportional then 36, 12 and x are continued proportion.

Therefore, \(\frac{36}{12}\) = \(\frac{12}{x}\)

⟹ 36x = 12 × 12

⟹ 36x = 144

⟹ x = \(\frac{144}{36}\)

⟹ x = 4.



6. Find the mean between 7\(\frac{1}{5}\)and 125.

Solution:

The mean proportional of 7\(\frac{1}{5}\)and 125 = +\(\sqrt{\frac{36}{5}\times 125} = +\sqrt{36\times 25}\) = 30

 


7. If a ≠ b and the duplicate proportion of a + c and b + c is a : b then prove that the mean proportional of a and b is c.

Solution:

The duplicate proportional of (a + c) and (b + c) is (a + c)^2 : (b + c)^2.

Therefore, \(\frac{(a + c)^{2}}{(b + c)^{2}} = \frac{a}{b}\)

⟹ b(a + c)\(^{2}\) = a(b + c)\(^{2}\)

⟹ b (a\(^{2}\) + c\(^{2}\) + 2ac) = a(b\(^{2}\) + c\(^{2}\) + 2bc)

⟹ b (a\(^{2}\) + c\(^{2}\)) = a(b\(^{2}\) + c\(^{2}\))

⟹ ba\(^{2}\) + bc\(^{2}\) = ab\(^{2}\) + ac\(^{2}\)

⟹ ba\(^{2}\) - ab\(^{2}\) = ac\(^{2}\) - bc\(^{2}\)

⟹ ab(a - b) = c\(^{2}\)(a - b)

⟹ ab = c\(^{2}\), [Since, a ≠ b, cancelling a - b]

Therefore, c is mean proportional of a and b.

 


8. Find the third proportional of 2x^2, 3xy

Solution:

Let the third proportional be k

Therefore, 2x^2, 3xy and k are in continued proportion

Therefore,

\frac{2x^{2}}{3xy} = \frac{3xy}{k}

⟹ 2x\(^{2}\)k = 9x\(^{2}\)y\(^{2}\)

⟹ 2k = 9y\(^{2}\)

⟹ k = \(\frac{9y^{2}}{2}\)

Therefore, the third proportional is \(\frac{9y^{2}}{2}\).


● Ratio and proportion









10th Grade Math

From Mean and Third Proportional to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Line-Segment, Ray and Line | Definition of in Line-segment | Symbol

    Jun 14, 24 10:41 AM

    Line-Segment, Ray and Line
    Definition of in Line-segment, ray and line geometry: A line segment is a fixed part of a line. It has two end points. It is named by the end points. In the figure given below end points are A and B…

    Read More

  2. Definition of Points, Lines and Shapes in Geometry | Types & Examples

    Jun 14, 24 09:45 AM

    How Many Points are There?
    Definition of points, lines and shapes in geometry: Point: A point is the fundamental element of geometry. If we put the tip of a pencil on a paper and press it lightly,

    Read More

  3. Subtracting Integers | Subtraction of Integers |Fundamental Operations

    Jun 13, 24 04:32 PM

    Subtraction of Integers
    Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

    Read More

  4. 6th Grade Worksheet on Whole Numbers |Answer|6th Grade Math Worksheets

    Jun 13, 24 04:17 PM

    6th Grade Worksheet on Whole Numbers
    In 6th Grade Worksheet on Whole Numbers contains various types of questions on whole numbers, successor and predecessor of a number, number line, addition of whole numbers, subtraction of whole number…

    Read More

  5. 6th Grade Integers Worksheet | Word Problems | True / False | Answers

    Jun 13, 24 03:50 PM

    6th Grade Integers Worksheet
    In 6th grade integers worksheet contains various types of questions on integers, absolute value of an integer, addition of integer, properties of integer, subtraction of integer, properties of subtrac…

    Read More