Comparing Ratios

In comparing ratios we will learn how to arrange the ratios.  


How to Compare Ratios?

To compare two ratios, follow these steps:

Step I: Make the second term of both the ratios equal.

For this, determine the LCM of the second terms of the ratios. Divide the LCM by the second term of each ratio. Multiply the numerator and the denominator of each ratio by the quotient.

Step II: Compare the first terms (numerators) of the new ratios.

Solved Examples on Comparing Ratios:

1. Which of the following ratios is grater?

Compare the ratios 3 : 4 and 1 : 2. 

LCM of the second terms, i.e., 4 and 2 = 4

Now, dividing the LCM by the second term of each ratio, we get 4 ÷ 4 = 1, and 4 ÷ 2 = 2

Therefore, \(\frac{3}{4}\) = \(\frac{3 * 1}{4 * 1}\) = \(\frac{3}{4}\)

\(\frac{1}{2}\) = \(\frac{1 * 2}{2 * 2}\) = \(\frac{2}{4}\)

As 3 > 2, \(\frac{3}{4}\) > \(\frac{2}{4}\), i.e., 3 : 4 > 1 : 2

Therefore the ratio 3:4 is greater than the ratio 1:2 according to the ratio comparison rules.



2. Which of the following ratios is grater?

Compare the ratios 3 : 5 and 2 : 11.

LCM of the second terms, i.e., 5 and 11 = 55

Now, dividing the LCM by the second term of each ratio, we get 55 ÷ 5 = 11, and 55 ÷ 11 = 5

Therefore, \(\frac{3}{5}\) = \(\frac{3 * 11}{5 * 11}\) = \(\frac{33}{55}\)

\(\frac{2}{11}\) = \(\frac{2 * 5}{11 * 5}\) = \(\frac{10}{55}\)

As 33 > 10, \(\frac{3}{5}\) > \(\frac{2}{11}\), i.e., 3 : 5 > 2 : 11.

Therefore the ratio 3 : 5 is greater than the ratio 2 : 11 according to the ratio comparison rules.


Working Rules for Comparison of Ratios:

To compare two or more given ratios, follow the steps given below:

Step I: Write each one of the given ratios in the form of a fraction in the simplest form.

Step II: Convert these fractions into like fractions and then compare.


3. Compare the ratios 4 : 7 and 5 : 8.

Solution:

4 : 7 = \(\frac{4}{7}\) and 5 : 8 = \(\frac{5}{8}\)

LCM of 7 and 8 is 56.

\(\frac{4}{7}\) = \(\frac{4 × 8}{7 × 8}\) = \(\frac{32}{56}\) and \(\frac{5}{8}\) = \(\frac{5 × 7}{8 × 7}\) = \(\frac{35}{56}\)

Clearly, \(\frac{35}{56}\) > \(\frac{32}{56}\)

\(\frac{5}{8}\) > \(\frac{4}{7}\)

⟹ 5 : 8 > 4 : 7

Hence, 5 : 8 > 4 : 7


Ratios in Ascending Order

4. Write the following ratios in ascending order 4 : 3, 7 : 10, 4 : 7.

Solution:

4 : 3 = \(\frac{4}{3}\);   7 : 10 = \(\frac{7}{10}\) and  4 : 7 = \(\frac{4}{7}\).

LCM of 3, 7 and 10 = 210

\(\frac{4}{3}\) = \(\frac{4 × 70}{3 × 70}\) = \(\frac{280}{210}\)

\(\frac{7}{10}\) = \(\frac{7 × 21}{10 × 21}\) = \(\frac{147}{210}\)

\(\frac{4}{7}\) = \(\frac{4 × 30}{7 × 30}\) = \(\frac{120}{210}\)


Now \(\frac{120}{210}\) < \(\frac{147}{210}\) < \(\frac{280}{210}\) 

\(\frac{4}{7}\) < \(\frac{7}{10}\) < \(\frac{4}{3}\)

4 : 7 < 7 : 10 < 4 : 3

Hence, 4 : 7 < 7 : 10 < 4 : 3


Comparing Ratios

Worksheet on Comparing Ratios:

1. Which of the following ratio is larger?

(i) 3 : 4 or 9 : 16

(ii) 15 : 16 or 24 : 25

(iii) 4 : 7 or 5 : 8

(iv) 9 : 20 or 8 : 13

(v) 1 : 2 or 13 : 27


Answer:

1. (i) 3 : 4 > 9 : 16

(ii) 15 : 16 < 24 : 25

(iii) 4 : 7 < 5 : 8

(iv) 9 : 20 < 8 : 13

(v) 1 : 2 > 13 : 27

● Ratio and proportion






10th Grade Math

From Comparing Ratios to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More