# Properties of Ratio and Proportion

Some useful properties of ratio and proportion are invertendo property, alternendo property, componendo Property, dividendo property, convertendo property, componendo-dividendo property, addendo property and equivalent ratio property. These properties are explained below with examples.

I. Invertendo Property: For four numbers a, b, c, d if a : b = c : d, then  b : a = d : c; that is, if two ratios are equal, then their inverse ratios are also equal.

If a : b :: c : d then b : a :: d : c.

Proof:

a : b :: c : d

⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$

⟹ $$\frac{b}{a}$$ = $$\frac{d}{c}$$

⟹ b : a :: d : c

Example: 6 : 10 = 9 : 15

Therefore, 10 : 6 = 5 : 3 = 15 : 9

II. Alternendo Property: For four numbers a, b, c, d if a : b = c : d, then  a : c = b : d; that is, if the second and third term interchange their places, then also the four terms are in proportion.

If a : b :: c : d then a : c :: b : d.

Proof:

a : b :: c : d

⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$

⟹ $$\frac{a}{b}$$   $$\frac{b}{c}$$ = $$\frac{c}{d}$$  $$\frac{b}{c}$$

⟹ $$\frac{a}{c}$$ = $$\frac{b}{d}$$

⟹ a : c :: b : d

Example: If 3 : 5 = 6 : 10 then 3 : 6 = 1 : 2 = 5 : 10

III. Componendo Property: For four numbers a, b, c, d if a : b = c : d then (a + b) : b :: (c + d) : d.

Proof:

a : b :: c : d

⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$

Adding 1 to both sides of $$\frac{a}{b}$$ = $$\frac{c}{d}$$, we get

⟹ $$\frac{a}{b}$$  + 1 = $$\frac{c}{d}$$ + 1

⟹ $$\frac{a + b}{b}$$ = $$\frac{c + d}{d}$$

⟹ (a + b) : b = (c + d) : d

Example: 4 : 5 = 8 : 10

Therefore, (4 + 5) : 5 = 9 : 5 = 18 : 10

= (8 + 10) : 10

IV:  Dividendo Property

If a : b :: c : d then (a - b) : b :: (c - d) : d.

Proof:

a : b :: c : d

⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$

Subtracting 1 from both sides,

⟹ $$\frac{a}{b}$$  - 1 = $$\frac{c}{d}$$ - 1

⟹ $$\frac{a - b}{b}$$ = $$\frac{c - d}{d}$$

⟹ (a - b) : b :: (c - d) : d

Example: 5 : 4 = 10 : 8

Therefore, (5 - 4) : 4 = 1 : 4 = (10 - 8) : 8

V. Convertendo Property

If a : b :: c : d then a : (a - b) :: c : (c - d).

Proof:

a : b :: c : d

⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$ ............................... (i)

⟹ $$\frac{a}{b}$$  - 1 = $$\frac{c}{d}$$ - 1

⟹ $$\frac{a - b}{b}$$ = $$\frac{c - d}{d}$$ ............................... (ii)

Dividing (i) by the corresponding sides of (ii),

⟹ $$\frac{\frac{a}{b}}{\frac{a - b}{b}} = \frac{\frac{c}{d}}{\frac{c - d}{d}}$$

⟹ $$\frac{a}{a - b}$$ = $$\frac{c}{c - d}$$

⟹ a : (a - b) :: c : (c - d).

VI. Componendo-Dividendo Property

If a : b :: c : d then (a + b) : (a - b) :: (c + d) : (c - d).

Proof:

a : b :: c : d

⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$

⟹ $$\frac{a}{b}$$  + 1 = $$\frac{c}{d}$$ + 1 and $$\frac{a}{b}$$  - 1 = $$\frac{c}{d}$$ - 1

⟹ $$\frac{a + b}{b}$$ = $$\frac{c + d}{d}$$ and $$\frac{a - b}{b}$$ = $$\frac{c - d}{d}$$

Dividing  the corresponding sides,

⟹ $$\frac{\frac{a + b}{b}}{\frac{a - b}{b}} = \frac{\frac{c + d}{d}}{\frac{c - d}{d}}$$

⟹ $$\frac{a + b}{a - b}$$ = $$\frac{c + d}{c - d}$$

⟹ (a + b) : (a - b) :: (c + d) : (c - d).

Writing in algebraic expressions, the componendo-dividendo property gives the following.

$$\frac{a}{b}$$ = $$\frac{c}{d}$$ ⟹ (a + b) : (a - b) :: (c + d) : (c - d)

Note: This property is frequently used in simplification.

Example: 7 : 3 = 14 : 6

(7 + 3) : ( 7 - 3) = 10 : 4 = 5 : 2

Again, (14 + 6) : (14 - 6) = 20 : 8 = 5 : 2

Therefore, ( 7 + 3) : ( 7 - 3) = ( 14 + 6) : ( 14 - 6)

If a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Proof:

a : b = c : d = e : f

Let, $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{e}{f}$$  = k (k ≠ 0).

Therefore, a = bk, c = dk, e = fk

Now, $$\frac{a + c + e}{b + d + f}$$ = $$\frac{bk + dk + fk}{b + d + f}$$ = $$\frac{k(b + d + f)}{b + d + f}$$ = k

Therefore, $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{e}{f}$$  = $$\frac{a + c + e}{b + d + f}$$

That is, a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Note: If a : b = c : d = e : f, then the value of each ratio will be $$\frac{am + cn + ep}{bm + dn + fp}$$ where m, n, p may be non zero number.]

In general, $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{e}{f}$$  =  ..................... = $$\frac{a + c + e + .................. }{b + d + f + ..................}$$

As, $$\frac{2}{3}$$ = $$\frac{6}{9}$$ = $$\frac{8}{12}$$ = $$\frac{2 + 6 + 8}{3 + 9 + 12}$$ = $$\frac{16}{24}$$ = $$\frac{2}{3}$$

VIII: Equivalent ratio property

If a : b :: c : d then (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d

Proof:

a : b :: c : d

Let, $$\frac{a}{b}$$ = $$\frac{c}{d}$$  = k (k ≠ 0).

Therefore, a = bk, c = dk.

Now, $$\frac{a ± c}{b ± d}$$ = $$\frac{bk ± dk}{b ± d}$$ = $$\frac{k(b ± d}{b ± d}$$ = k = $$\frac{a}{b}$$ = $$\frac{c}{d}$$  .

Therefore, (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d.

Algebraically, the property gives the following.

$$\frac{a}{b}$$ = $$\frac{c}{d}$$ ⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{a + c}{b + d}$$ = $$\frac{a - c}{b - d}$$

Similarly, we can prove that

$$\frac{a}{b}$$ = $$\frac{c}{d}$$ ⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{pa + qc}{pb + qd}$$

$$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{e}{f}$$ ⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{e}{f}$$ = $$\frac{a + c + e}{b + d + f}$$ = $$\frac{ap + cq + er}{bp + dq + fr}$$

For example:

1. $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{2a + 3c}{2b + 3d}$$ = $$\frac{ab + cd}{b^{2} + d^{2}}$$, etc.

2. $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{e}{f}$$ ⟹ $$\frac{a}{b}$$ = $$\frac{c}{d}$$ = $$\frac{e}{f}$$ = $$\frac{a + 2c + 3e}{b + 2d + 3f}$$ = $$\frac{4a – 3c + 9e}{4b – 3d + 9f}$$, etc.

● Ratio and proportion

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

Mar 02, 24 05:31 PM

The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

2. ### Subtraction of Fractions having the Same Denominator | Like Fractions

Mar 02, 24 04:36 PM

To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

3. ### Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

Mar 02, 24 03:32 PM

To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

4. ### Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

Mar 01, 24 01:42 PM

In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…