Properties of Ratio and Proportion

Some useful properties of ratio and proportion are invertendo property, alternendo property, componendo Property, dividendo property, convertendo property, componendo-dividendo property, addendo property and equivalent ratio property. These properties are explained below with examples.

I. Invertendo Property: For four numbers a, b, c, d if a : b = c : d, then  b : a = d : c; that is, if two ratios are equal, then their inverse ratios are also equal.

If a : b :: c : d then b : a :: d : c.

Proof:

a : b :: c : d

ab = cd

ba = dc

⟹ b : a :: d : c

Example: 6 : 10 = 9 : 15

Therefore, 10 : 6 = 5 : 3 = 15 : 9


II. Alternendo Property: For four numbers a, b, c, d if a : b = c : d, then  a : c = b : d; that is, if the second and third term interchange their places, then also the four terms are in proportion.

If a : b :: c : d then a : c :: b : d.

Proof:

a : b :: c : d

ab = cd

ab   bc = cd  bc

ac = bd

⟹ a : c :: b : d


Example: If 3 : 5 = 6 : 10 then 3 : 6 = 1 : 2 = 5 : 10



III. Componendo Property: For four numbers a, b, c, d if a : b = c : d then (a + b) : b :: (c + d) : d.

Proof:

a : b :: c : d

ab = cd

Adding 1 to both sides of ab = cd, we get

ab  + 1 = cd + 1

a+bb = c+dd

⟹ (a + b) : b = (c + d) : d


Example: 4 : 5 = 8 : 10

Therefore, (4 + 5) : 5 = 9 : 5 = 18 : 10

                                         = (8 + 10) : 10



IV:  Dividendo Property

If a : b :: c : d then (a - b) : b :: (c - d) : d.

Proof:

a : b :: c : d

ab = cd

Subtracting 1 from both sides,

ab  - 1 = cd - 1

abb = cdd

⟹ (a - b) : b :: (c - d) : d


Example: 5 : 4 = 10 : 8

Therefore, (5 - 4) : 4 = 1 : 4 = (10 - 8) : 8



V. Convertendo Property

If a : b :: c : d then a : (a - b) :: c : (c - d).

Proof:

a : b :: c : d

ab = cd ............................... (i)

ab  - 1 = cd - 1

abb = cdd ............................... (ii)

Dividing (i) by the corresponding sides of (ii),

ababb=cdcdd

aab = ccd

⟹ a : (a - b) :: c : (c - d).



VI. Componendo-Dividendo Property

If a : b :: c : d then (a + b) : (a - b) :: (c + d) : (c - d).

Proof:

a : b :: c : d

ab = cd

ab  + 1 = cd + 1 and ab  - 1 = cd - 1

a+bb = c+dd and abb = cdd

Dividing  the corresponding sides,

a+bbabb=c+ddcdd

a+bab = c+dcd

⟹ (a + b) : (a - b) :: (c + d) : (c - d).

Writing in algebraic expressions, the componendo-dividendo property gives the following.

ab = cd ⟹ (a + b) : (a - b) :: (c + d) : (c - d)

Note: This property is frequently used in simplification.

Example: 7 : 3 = 14 : 6

(7 + 3) : ( 7 - 3) = 10 : 4 = 5 : 2

Again, (14 + 6) : (14 - 6) = 20 : 8 = 5 : 2

Therefore, ( 7 + 3) : ( 7 - 3) = ( 14 + 6) : ( 14 - 6)



VII: Addendo Property:

If a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Proof:

a : b = c : d = e : f

Let, ab = cd = ef  = k (k ≠ 0).

Therefore, a = bk, c = dk, e = fk

Now, a+c+eb+d+f = bk+dk+fkb+d+f = k(b+d+f)b+d+f = k

Therefore, ab = cd = ef  = a+c+eb+d+f

That is, a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Note: If a : b = c : d = e : f, then the value of each ratio will be am+cn+epbm+dn+fp where m, n, p may be non zero number.]

In general, ab = cd = ef  =  ..................... = a+c+e+..................b+d+f+..................

 

As, 23 = 69 = 812 = 2+6+83+9+12 = 1624 = 23



VIII: Equivalent ratio property

If a : b :: c : d then (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d

Proof:

a : b :: c : d

Let, ab = cd  = k (k ≠ 0).

Therefore, a = bk, c = dk.

Now, a±cb±d = bk±dkb±d = k(b±db±d = k = ab = cd  .

Therefore, (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d.

Algebraically, the property gives the following.

ab = cdab = cd = a+cb+d = acbd

Similarly, we can prove that

ab = cdab = cd = pa+qcpb+qd

ab = cd = efab = cd = ef = a+c+eb+d+f = ap+cq+erbp+dq+fr


For example:

1. ab = cd = ab = cd = 2a+3c2b+3d = ab+cdb2+d2, etc.

2. ab = cd = efab = cd = ef = a+2c+3eb+2d+3f = 4a3c+9e4b3d+9f, etc.

 

● Ratio and proportion






10th Grade Math

From  Properties of Ratio and Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  4. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  5. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More