Properties of Ratio and Proportion

Some useful properties of ratio and proportion are invertendo property, alternendo property, componendo Property, dividendo property, convertendo property, componendo-dividendo property, addendo property and equivalent ratio property. These properties are explained below with examples.

I. Invertendo Property: For four numbers a, b, c, d if a : b = c : d, then  b : a = d : c; that is, if two ratios are equal, then their inverse ratios are also equal.

If a : b :: c : d then b : a :: d : c.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{b}{a}\) = \(\frac{d}{c}\)

⟹ b : a :: d : c

Example: 6 : 10 = 9 : 15

Therefore, 10 : 6 = 5 : 3 = 15 : 9


II. Alternendo Property: For four numbers a, b, c, d if a : b = c : d, then  a : c = b : d; that is, if the second and third term interchange their places, then also the four terms are in proportion.

If a : b :: c : d then a : c :: b : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{a}{b}\)   \(\frac{b}{c}\) = \(\frac{c}{d}\)  \(\frac{b}{c}\)

⟹ \(\frac{a}{c}\) = \(\frac{b}{d}\)

⟹ a : c :: b : d


Example: If 3 : 5 = 6 : 10 then 3 : 6 = 1 : 2 = 5 : 10



III. Componendo Property: For four numbers a, b, c, d if a : b = c : d then (a + b) : b :: (c + d) : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

Adding 1 to both sides of \(\frac{a}{b}\) = \(\frac{c}{d}\), we get

⟹ \(\frac{a}{b}\)  + 1 = \(\frac{c}{d}\) + 1

⟹ \(\frac{a + b}{b}\) = \(\frac{c + d}{d}\)

⟹ (a + b) : b = (c + d) : d


Example: 4 : 5 = 8 : 10

Therefore, (4 + 5) : 5 = 9 : 5 = 18 : 10

                                         = (8 + 10) : 10



IV:  Dividendo Property

If a : b :: c : d then (a - b) : b :: (c - d) : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

Subtracting 1 from both sides,

⟹ \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\)

⟹ (a - b) : b :: (c - d) : d


Example: 5 : 4 = 10 : 8

Therefore, (5 - 4) : 4 = 1 : 4 = (10 - 8) : 8



V. Convertendo Property

If a : b :: c : d then a : (a - b) :: c : (c - d).

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) ............................... (i)

⟹ \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\) ............................... (ii)

Dividing (i) by the corresponding sides of (ii),

⟹ \(\frac{\frac{a}{b}}{\frac{a - b}{b}} = \frac{\frac{c}{d}}{\frac{c - d}{d}}\)

⟹ \(\frac{a}{a - b}\) = \(\frac{c}{c - d}\)

⟹ a : (a - b) :: c : (c - d).



VI. Componendo-Dividendo Property

If a : b :: c : d then (a + b) : (a - b) :: (c + d) : (c - d).

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{a}{b}\)  + 1 = \(\frac{c}{d}\) + 1 and \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a + b}{b}\) = \(\frac{c + d}{d}\) and \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\)

Dividing  the corresponding sides,

⟹ \(\frac{\frac{a + b}{b}}{\frac{a - b}{b}} = \frac{\frac{c + d}{d}}{\frac{c - d}{d}}\)

⟹ \(\frac{a + b}{a - b}\) = \(\frac{c + d}{c - d}\)

⟹ (a + b) : (a - b) :: (c + d) : (c - d).

Writing in algebraic expressions, the componendo-dividendo property gives the following.

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ (a + b) : (a - b) :: (c + d) : (c - d)

Note: This property is frequently used in simplification.

Example: 7 : 3 = 14 : 6

(7 + 3) : ( 7 - 3) = 10 : 4 = 5 : 2

Again, (14 + 6) : (14 - 6) = 20 : 8 = 5 : 2

Therefore, ( 7 + 3) : ( 7 - 3) = ( 14 + 6) : ( 14 - 6)



VII: Addendo Property:

If a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Proof:

a : b = c : d = e : f

Let, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  = k (k ≠ 0).

Therefore, a = bk, c = dk, e = fk

Now, \(\frac{a + c + e}{b + d + f}\) = \(\frac{bk + dk + fk}{b + d + f}\) = \(\frac{k(b + d + f)}{b + d + f}\) = k

Therefore, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  = \(\frac{a + c + e}{b + d + f}\)

That is, a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Note: If a : b = c : d = e : f, then the value of each ratio will be \(\frac{am + cn + ep}{bm + dn + fp}\) where m, n, p may be non zero number.]

In general, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  =  ..................... = \(\frac{a + c + e + .................. }{b + d + f + ..................}\)

 

As, \(\frac{2}{3}\) = \(\frac{6}{9}\) = \(\frac{8}{12}\) = \(\frac{2 + 6 + 8}{3 + 9 + 12}\) = \(\frac{16}{24}\) = \(\frac{2}{3}\)



VIII: Equivalent ratio property

If a : b :: c : d then (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d

Proof:

a : b :: c : d

Let, \(\frac{a}{b}\) = \(\frac{c}{d}\)  = k (k ≠ 0).

Therefore, a = bk, c = dk.

Now, \(\frac{a ± c}{b ± d}\) = \(\frac{bk ± dk}{b ± d}\) = \(\frac{k(b ± d}{b ± d}\) = k = \(\frac{a}{b}\) = \(\frac{c}{d}\)  .

Therefore, (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d.

Algebraically, the property gives the following.

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a + c}{b + d}\) = \(\frac{a - c}{b - d}\)

Similarly, we can prove that

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{pa + qc}{pb + qd}\)

\(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) = \(\frac{a + c + e}{b + d + f}\) = \(\frac{ap + cq + er}{bp + dq + fr}\)


For example:

1. \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{2a + 3c}{2b + 3d}\) = \(\frac{ab + cd}{b^{2} + d^{2}}\), etc.

2. \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) = \(\frac{a + 2c + 3e}{b + 2d + 3f}\) = \(\frac{4a – 3c + 9e}{4b – 3d + 9f}\), etc.

 

● Ratio and proportion






10th Grade Math

From  Properties of Ratio and Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Measurement of Capacity | Measuring Capacity Worksheets

    May 01, 24 05:27 PM

    Measurement of Capacity
    In worksheet on measurement of capacity, all grade students can practice the questions on units for measuring capacity. This exercise sheet on measurements can be practiced by the students to get more

    Read More

  2. Conversion of Standard Unit of Capacity | Unit of Capacity | Problems

    May 01, 24 04:42 PM

    For the conversion of standard unit of capacity it’s very important to know the relationship between the different units of capacity. We know, one litre = 1000 millilitre 1000 millilitre = 1 litre

    Read More

  3. Conversion of Measuring Length | Conversion of Length | Length Convers

    May 01, 24 02:57 PM

    Conversion of Measuring Length
    In conversion of measuring length we will learn how to convert meters into centimeters, kilometers into meters, centimeters into meters and meters into kilometers. To convert meters into centimeters…

    Read More

  4. Conversion of Measuring Mass | Conversion of Kilograms into Grams | kg

    May 01, 24 02:45 PM

    In conversion of measuring mass we will learn how to convert kilograms into grams, grams into kilograms, kilograms & grams into grams and grams into kilograms & grams. Conversion of kilograms

    Read More

  5. Unit of Mass or Weight | Unit Weights for Measuring | Common Balance

    Apr 30, 24 05:38 PM

    Measuring Weight
    We know the main standard unit of mass or weight is kilogram which we write in short as ‘kg’. 1000th part of this kilogram is gram which is written in short as ‘g’.

    Read More