Properties of Ratio and Proportion

Some useful properties of ratio and proportion are invertendo property, alternendo property, componendo Property, dividendo property, convertendo property, componendo-dividendo property, addendo property and equivalent ratio property. These properties are explained below with examples.

I. Invertendo Property: For four numbers a, b, c, d if a : b = c : d, then  b : a = d : c; that is, if two ratios are equal, then their inverse ratios are also equal.

If a : b :: c : d then b : a :: d : c.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{b}{a}\) = \(\frac{d}{c}\)

⟹ b : a :: d : c

Example: 6 : 10 = 9 : 15

Therefore, 10 : 6 = 5 : 3 = 15 : 9


II. Alternendo Property: For four numbers a, b, c, d if a : b = c : d, then  a : c = b : d; that is, if the second and third term interchange their places, then also the four terms are in proportion.

If a : b :: c : d then a : c :: b : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{a}{b}\)   \(\frac{b}{c}\) = \(\frac{c}{d}\)  \(\frac{b}{c}\)

⟹ \(\frac{a}{c}\) = \(\frac{b}{d}\)

⟹ a : c :: b : d


Example: If 3 : 5 = 6 : 10 then 3 : 6 = 1 : 2 = 5 : 10



III. Componendo Property: For four numbers a, b, c, d if a : b = c : d then (a + b) : b :: (c + d) : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

Adding 1 to both sides of \(\frac{a}{b}\) = \(\frac{c}{d}\), we get

⟹ \(\frac{a}{b}\)  + 1 = \(\frac{c}{d}\) + 1

⟹ \(\frac{a + b}{b}\) = \(\frac{c + d}{d}\)

⟹ (a + b) : b = (c + d) : d


Example: 4 : 5 = 8 : 10

Therefore, (4 + 5) : 5 = 9 : 5 = 18 : 10

                                         = (8 + 10) : 10



IV:  Dividendo Property

If a : b :: c : d then (a - b) : b :: (c - d) : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

Subtracting 1 from both sides,

⟹ \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\)

⟹ (a - b) : b :: (c - d) : d


Example: 5 : 4 = 10 : 8

Therefore, (5 - 4) : 4 = 1 : 4 = (10 - 8) : 8



V. Convertendo Property

If a : b :: c : d then a : (a - b) :: c : (c - d).

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) ............................... (i)

⟹ \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\) ............................... (ii)

Dividing (i) by the corresponding sides of (ii),

⟹ \(\frac{\frac{a}{b}}{\frac{a - b}{b}} = \frac{\frac{c}{d}}{\frac{c - d}{d}}\)

⟹ \(\frac{a}{a - b}\) = \(\frac{c}{c - d}\)

⟹ a : (a - b) :: c : (c - d).



VI. Componendo-Dividendo Property

If a : b :: c : d then (a + b) : (a - b) :: (c + d) : (c - d).

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{a}{b}\)  + 1 = \(\frac{c}{d}\) + 1 and \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a + b}{b}\) = \(\frac{c + d}{d}\) and \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\)

Dividing  the corresponding sides,

⟹ \(\frac{\frac{a + b}{b}}{\frac{a - b}{b}} = \frac{\frac{c + d}{d}}{\frac{c - d}{d}}\)

⟹ \(\frac{a + b}{a - b}\) = \(\frac{c + d}{c - d}\)

⟹ (a + b) : (a - b) :: (c + d) : (c - d).

Writing in algebraic expressions, the componendo-dividendo property gives the following.

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ (a + b) : (a - b) :: (c + d) : (c - d)

Note: This property is frequently used in simplification.

Example: 7 : 3 = 14 : 6

(7 + 3) : ( 7 - 3) = 10 : 4 = 5 : 2

Again, (14 + 6) : (14 - 6) = 20 : 8 = 5 : 2

Therefore, ( 7 + 3) : ( 7 - 3) = ( 14 + 6) : ( 14 - 6)



VII: Addendo Property:

If a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Proof:

a : b = c : d = e : f

Let, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  = k (k ≠ 0).

Therefore, a = bk, c = dk, e = fk

Now, \(\frac{a + c + e}{b + d + f}\) = \(\frac{bk + dk + fk}{b + d + f}\) = \(\frac{k(b + d + f)}{b + d + f}\) = k

Therefore, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  = \(\frac{a + c + e}{b + d + f}\)

That is, a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Note: If a : b = c : d = e : f, then the value of each ratio will be \(\frac{am + cn + ep}{bm + dn + fp}\) where m, n, p may be non zero number.]

In general, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  =  ..................... = \(\frac{a + c + e + .................. }{b + d + f + ..................}\)

 

As, \(\frac{2}{3}\) = \(\frac{6}{9}\) = \(\frac{8}{12}\) = \(\frac{2 + 6 + 8}{3 + 9 + 12}\) = \(\frac{16}{24}\) = \(\frac{2}{3}\)



VIII: Equivalent ratio property

If a : b :: c : d then (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d

Proof:

a : b :: c : d

Let, \(\frac{a}{b}\) = \(\frac{c}{d}\)  = k (k ≠ 0).

Therefore, a = bk, c = dk.

Now, \(\frac{a ± c}{b ± d}\) = \(\frac{bk ± dk}{b ± d}\) = \(\frac{k(b ± d}{b ± d}\) = k = \(\frac{a}{b}\) = \(\frac{c}{d}\)  .

Therefore, (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d.

Algebraically, the property gives the following.

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a + c}{b + d}\) = \(\frac{a - c}{b - d}\)

Similarly, we can prove that

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{pa + qc}{pb + qd}\)

\(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) = \(\frac{a + c + e}{b + d + f}\) = \(\frac{ap + cq + er}{bp + dq + fr}\)


For example:

1. \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{2a + 3c}{2b + 3d}\) = \(\frac{ab + cd}{b^{2} + d^{2}}\), etc.

2. \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) = \(\frac{a + 2c + 3e}{b + 2d + 3f}\) = \(\frac{4a – 3c + 9e}{4b – 3d + 9f}\), etc.

 

● Ratio and proportion






10th Grade Math

From  Properties of Ratio and Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 22, 24 03:26 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Word Problems on Multiplication |Multiplication Word Problem Worksheet

    Oct 22, 24 01:23 AM

    Multiplication Word Problem
    Word problems on multiplication for fourth grade students are solved here step by step. Problem Sums Involving Multiplication: 1. 24 folders each has 56 sheets of paper inside them. How many sheets of…

    Read More

  3. Worksheet on Word Problems on Multiplication | Multiplication Problems

    Oct 22, 24 12:31 AM

    In worksheet on word problems on multiplication, all grade students can practice the questions on word problems involving multiplication. This exercise sheet on word problems on multiplication

    Read More

  4. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More