Properties of Ratio and Proportion

Some useful properties of ratio and proportion are invertendo property, alternendo property, componendo Property, dividendo property, convertendo property, componendo-dividendo property, addendo property and equivalent ratio property. These properties are explained below with examples.

I. Invertendo Property: For four numbers a, b, c, d if a : b = c : d, then  b : a = d : c; that is, if two ratios are equal, then their inverse ratios are also equal.

If a : b :: c : d then b : a :: d : c.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{b}{a}\) = \(\frac{d}{c}\)

⟹ b : a :: d : c

Example: 6 : 10 = 9 : 15

Therefore, 10 : 6 = 5 : 3 = 15 : 9


II. Alternendo Property: For four numbers a, b, c, d if a : b = c : d, then  a : c = b : d; that is, if the second and third term interchange their places, then also the four terms are in proportion.

If a : b :: c : d then a : c :: b : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{a}{b}\)   \(\frac{b}{c}\) = \(\frac{c}{d}\)  \(\frac{b}{c}\)

⟹ \(\frac{a}{c}\) = \(\frac{b}{d}\)

⟹ a : c :: b : d


Example: If 3 : 5 = 6 : 10 then 3 : 6 = 1 : 2 = 5 : 10



III. Componendo Property: For four numbers a, b, c, d if a : b = c : d then (a + b) : b :: (c + d) : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

Adding 1 to both sides of \(\frac{a}{b}\) = \(\frac{c}{d}\), we get

⟹ \(\frac{a}{b}\)  + 1 = \(\frac{c}{d}\) + 1

⟹ \(\frac{a + b}{b}\) = \(\frac{c + d}{d}\)

⟹ (a + b) : b = (c + d) : d


Example: 4 : 5 = 8 : 10

Therefore, (4 + 5) : 5 = 9 : 5 = 18 : 10

                                         = (8 + 10) : 10



IV:  Dividendo Property

If a : b :: c : d then (a - b) : b :: (c - d) : d.

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

Subtracting 1 from both sides,

⟹ \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\)

⟹ (a - b) : b :: (c - d) : d


Example: 5 : 4 = 10 : 8

Therefore, (5 - 4) : 4 = 1 : 4 = (10 - 8) : 8



V. Convertendo Property

If a : b :: c : d then a : (a - b) :: c : (c - d).

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) ............................... (i)

⟹ \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\) ............................... (ii)

Dividing (i) by the corresponding sides of (ii),

⟹ \(\frac{\frac{a}{b}}{\frac{a - b}{b}} = \frac{\frac{c}{d}}{\frac{c - d}{d}}\)

⟹ \(\frac{a}{a - b}\) = \(\frac{c}{c - d}\)

⟹ a : (a - b) :: c : (c - d).



VI. Componendo-Dividendo Property

If a : b :: c : d then (a + b) : (a - b) :: (c + d) : (c - d).

Proof:

a : b :: c : d

⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\)

⟹ \(\frac{a}{b}\)  + 1 = \(\frac{c}{d}\) + 1 and \(\frac{a}{b}\)  - 1 = \(\frac{c}{d}\) - 1

⟹ \(\frac{a + b}{b}\) = \(\frac{c + d}{d}\) and \(\frac{a - b}{b}\) = \(\frac{c - d}{d}\)

Dividing  the corresponding sides,

⟹ \(\frac{\frac{a + b}{b}}{\frac{a - b}{b}} = \frac{\frac{c + d}{d}}{\frac{c - d}{d}}\)

⟹ \(\frac{a + b}{a - b}\) = \(\frac{c + d}{c - d}\)

⟹ (a + b) : (a - b) :: (c + d) : (c - d).

Writing in algebraic expressions, the componendo-dividendo property gives the following.

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ (a + b) : (a - b) :: (c + d) : (c - d)

Note: This property is frequently used in simplification.

Example: 7 : 3 = 14 : 6

(7 + 3) : ( 7 - 3) = 10 : 4 = 5 : 2

Again, (14 + 6) : (14 - 6) = 20 : 8 = 5 : 2

Therefore, ( 7 + 3) : ( 7 - 3) = ( 14 + 6) : ( 14 - 6)



VII: Addendo Property:

If a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Proof:

a : b = c : d = e : f

Let, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  = k (k ≠ 0).

Therefore, a = bk, c = dk, e = fk

Now, \(\frac{a + c + e}{b + d + f}\) = \(\frac{bk + dk + fk}{b + d + f}\) = \(\frac{k(b + d + f)}{b + d + f}\) = k

Therefore, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  = \(\frac{a + c + e}{b + d + f}\)

That is, a : b = c : d = e : f, value of each ratio is (a + c + e) : (b + d + f)

Note: If a : b = c : d = e : f, then the value of each ratio will be \(\frac{am + cn + ep}{bm + dn + fp}\) where m, n, p may be non zero number.]

In general, \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\)  =  ..................... = \(\frac{a + c + e + .................. }{b + d + f + ..................}\)

 

As, \(\frac{2}{3}\) = \(\frac{6}{9}\) = \(\frac{8}{12}\) = \(\frac{2 + 6 + 8}{3 + 9 + 12}\) = \(\frac{16}{24}\) = \(\frac{2}{3}\)



VIII: Equivalent ratio property

If a : b :: c : d then (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d

Proof:

a : b :: c : d

Let, \(\frac{a}{b}\) = \(\frac{c}{d}\)  = k (k ≠ 0).

Therefore, a = bk, c = dk.

Now, \(\frac{a ± c}{b ± d}\) = \(\frac{bk ± dk}{b ± d}\) = \(\frac{k(b ± d}{b ± d}\) = k = \(\frac{a}{b}\) = \(\frac{c}{d}\)  .

Therefore, (a ± c) : (b ± d) : : a: b and (a ± c) : (b ± d) :: c : d.

Algebraically, the property gives the following.

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a + c}{b + d}\) = \(\frac{a - c}{b - d}\)

Similarly, we can prove that

\(\frac{a}{b}\) = \(\frac{c}{d}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{pa + qc}{pb + qd}\)

\(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) = \(\frac{a + c + e}{b + d + f}\) = \(\frac{ap + cq + er}{bp + dq + fr}\)


For example:

1. \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{2a + 3c}{2b + 3d}\) = \(\frac{ab + cd}{b^{2} + d^{2}}\), etc.

2. \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) ⟹ \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{e}{f}\) = \(\frac{a + 2c + 3e}{b + 2d + 3f}\) = \(\frac{4a – 3c + 9e}{4b – 3d + 9f}\), etc.

 

● Ratio and proportion






10th Grade Math

From  Properties of Ratio and Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More