Arranging Ratios

We will learn how to solve different types of problems on arranging ratios in ascending order and descending order.

When a ratio is expressed in fraction or in decimal we first need to convert the ratio into whole number to compare the ratios.

The order of a ratio is important to compare two or more ratios. By reversing the antecedent and consequent of a ratio are different ratio is obtained.


Solved problems on comparing and arranging ratios in ascending and descending order:

1. Compare the ratios 1\(\frac{1}{3}\) : 1\(\frac{1}{5}\) and 1.6 : 1.2

Solution:

1\(\frac{1}{3}\) : 1\(\frac{1}{5}\) and 1.6 : 1.2

= \(\frac{4}{3}\) : \(\frac{6}{5}\) and \(\frac{16}{10}\) : \(\frac{12}{10}\)

= \(\frac{4}{3}\) × 15 : \(\frac{6}{5}\) × 15 and \(\frac{16}{10}\) × 10 : \(\frac{12}{10}\) × 10

= 20 : 18 and 16 : 12

= \(\frac{20}{18}\) and \(\frac{16}{12}\)

= \(\frac{10 × 2}{9 × 2}\) and \(\frac{4 × 4}{3 × 4}\)

= \(\frac{10}{9}\) and \(\frac{4}{3}\)

= 10 : 9 and 4 : 3

Now, \(\frac{10}{9}\) and \(\frac{4}{3}\) are to be compared. L.C.M. of 9 and 3 = 9

\(\frac{10}{9}\) = \(\frac{10 × 1}{9 × 1}\) and \(\frac{4}{3}\) = \(\frac{4 × 3}{3 × 3}\)

= \(\frac{10}{9}\) and \(\frac{12}{9}\)

Since, \(\frac{10}{9}\) < \(\frac{12}{9}\)

Therefore, 10 : 9 < 4 : 3

Hence, 1\(\frac{1}{3}\) : 1\(\frac{1}{5}\) < 1.6 : 1.2


2. Compare the ratios 14 : 23, 5 : 12 and 61 : 92 in ascending order.

Solution:

Given ratios can be written as \(\frac{14}{23}\), \(\frac{5}{12}\) and \(\frac{61}{92}\)

L.C.M. of the denominators 23, 12 and 92 = 276

\(\frac{14}{23}\) = \(\frac{14 × 12}{23 × 12}\) = \(\frac{168}{276}\)

\(\frac{5}{12}\) = \(\frac{5 × 23}{12 × 23}\) = \(\frac{115}{276}\)

and

\(\frac{61}{92}\) = \(\frac{61 × 3}{92 × 3}\) = \(\frac{183}{276}\)

Since, \(\frac{115}{276}\) < \(\frac{168}{276}\) < \(\frac{183}{276}\)

Therefore, \(\frac{5}{12}\) < \(\frac{14}{23}\) < \(\frac{61}{92}\)

Hence, 5 : 12 < 14 : 23 < 61 : 92



3. Arrange the ratios 1 : 3, 5 : 12, 4 : 15 and 2 : 3 in descending order.

Solution:

Given ratios can be written as \(\frac{1}{3}\), \(\frac{5}{12}\), \(\frac{4}{15}\) and \(\frac{2}{3}\)

L.C.M. of the denominators 3, 12, 15 and 3 = 60

\(\frac{1}{3}\) = \(\frac{1 × 20}{3 × 20}\) = \(\frac{20}{60}\)

\(\frac{5}{12}\) = \(\frac{5 × 5}{12 × 5}\) = \(\frac{25}{60}\)

\(\frac{4}{15}\) = \(\frac{4 × 4}{15 × 4}\) = \(\frac{16}{60}\)

and

\(\frac{2}{3}\) = \(\frac{2 × 20}{3 × 20}\) = \(\frac{40}{60}\)

Since, \(\frac{40}{60}\) > \(\frac{25}{60}\) > \(\frac{20}{60}\) > \(\frac{16}{60}\)

Therefore, \(\frac{2}{3}\) > \(\frac{5}{12}\) > \(\frac{1}{3}\) > \(\frac{4}{15}\)

Hence, 2 : 3 > 5 : 12 > 1 : 3 >  4 : 15.


● Ratio and proportion









10th Grade Math

From Arranging Ratios to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Addition of Three 1-Digit Numbers | Add 3 Single Digit Numbers | Steps

    Sep 19, 24 12:56 AM

    Addition of Three 1-Digit Numbers
    To add three numbers, we add any two numbers first. Then, we add the third number to the sum of the first two numbers. For example, let us add the numbers 3, 4 and 5. We can write the numbers horizont…

    Read More

  2. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 18, 24 03:29 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  3. Addition of Numbers using Number Line | Addition Rules on Number Line

    Sep 18, 24 02:47 PM

    Addition Using the Number Line
    Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

    Read More

  4. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  5. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More