Arranging Ratios

We will learn how to solve different types of problems on arranging ratios in ascending order and descending order.

When a ratio is expressed in fraction or in decimal we first need to convert the ratio into whole number to compare the ratios.

The order of a ratio is important to compare two or more ratios. By reversing the antecedent and consequent of a ratio are different ratio is obtained.


Solved problems on comparing and arranging ratios in ascending and descending order:

1. Compare the ratios 1\(\frac{1}{3}\) : 1\(\frac{1}{5}\) and 1.6 : 1.2

Solution:

1\(\frac{1}{3}\) : 1\(\frac{1}{5}\) and 1.6 : 1.2

= \(\frac{4}{3}\) : \(\frac{6}{5}\) and \(\frac{16}{10}\) : \(\frac{12}{10}\)

= \(\frac{4}{3}\) × 15 : \(\frac{6}{5}\) × 15 and \(\frac{16}{10}\) × 10 : \(\frac{12}{10}\) × 10

= 20 : 18 and 16 : 12

= \(\frac{20}{18}\) and \(\frac{16}{12}\)

= \(\frac{10 × 2}{9 × 2}\) and \(\frac{4 × 4}{3 × 4}\)

= \(\frac{10}{9}\) and \(\frac{4}{3}\)

= 10 : 9 and 4 : 3

Now, \(\frac{10}{9}\) and \(\frac{4}{3}\) are to be compared. L.C.M. of 9 and 3 = 9

\(\frac{10}{9}\) = \(\frac{10 × 1}{9 × 1}\) and \(\frac{4}{3}\) = \(\frac{4 × 3}{3 × 3}\)

= \(\frac{10}{9}\) and \(\frac{12}{9}\)

Since, \(\frac{10}{9}\) < \(\frac{12}{9}\)

Therefore, 10 : 9 < 4 : 3

Hence, 1\(\frac{1}{3}\) : 1\(\frac{1}{5}\) < 1.6 : 1.2


2. Compare the ratios 14 : 23, 5 : 12 and 61 : 92 in ascending order.

Solution:

Given ratios can be written as \(\frac{14}{23}\), \(\frac{5}{12}\) and \(\frac{61}{92}\)

L.C.M. of the denominators 23, 12 and 92 = 276

\(\frac{14}{23}\) = \(\frac{14 × 12}{23 × 12}\) = \(\frac{168}{276}\)

\(\frac{5}{12}\) = \(\frac{5 × 23}{12 × 23}\) = \(\frac{115}{276}\)

and

\(\frac{61}{92}\) = \(\frac{61 × 3}{92 × 3}\) = \(\frac{183}{276}\)

Since, \(\frac{115}{276}\) < \(\frac{168}{276}\) < \(\frac{183}{276}\)

Therefore, \(\frac{5}{12}\) < \(\frac{14}{23}\) < \(\frac{61}{92}\)

Hence, 5 : 12 < 14 : 23 < 61 : 92



3. Arrange the ratios 1 : 3, 5 : 12, 4 : 15 and 2 : 3 in descending order.

Solution:

Given ratios can be written as \(\frac{1}{3}\), \(\frac{5}{12}\), \(\frac{4}{15}\) and \(\frac{2}{3}\)

L.C.M. of the denominators 3, 12, 15 and 3 = 60

\(\frac{1}{3}\) = \(\frac{1 × 20}{3 × 20}\) = \(\frac{20}{60}\)

\(\frac{5}{12}\) = \(\frac{5 × 5}{12 × 5}\) = \(\frac{25}{60}\)

\(\frac{4}{15}\) = \(\frac{4 × 4}{15 × 4}\) = \(\frac{16}{60}\)

and

\(\frac{2}{3}\) = \(\frac{2 × 20}{3 × 20}\) = \(\frac{40}{60}\)

Since, \(\frac{40}{60}\) > \(\frac{25}{60}\) > \(\frac{20}{60}\) > \(\frac{16}{60}\)

Therefore, \(\frac{2}{3}\) > \(\frac{5}{12}\) > \(\frac{1}{3}\) > \(\frac{4}{15}\)

Hence, 2 : 3 > 5 : 12 > 1 : 3 >  4 : 15.


● Ratio and proportion









10th Grade Math

From Arranging Ratios to HOME


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More