Important Properties of Ratios

Some of the important properties of ratios are discussed here.

1. Ratio \(\frac{m}{n}\) has no unit and can be written as m : n (read as m is to n).

2. The quantities m and n are called terms of the ratio. The first quantity m is called the first term or the antecedent and the second quantity n is called the second term or the consequent of the ratio m : n.

The second term of a ratio cannot be zero.

i.e., (i) In the ratio m : n, the second term n cannot be zero (n ≠ 0).

(ii) In the ratio n : m, the second term cannot be zero (m ≠ 0).


3. The ratio of two unlike quantities is not defined. For example, the ratio between 5 kg and 15 meters cannot be found.

4. Ratio is a pure number and does not have any unit.

5. If both the terms of a ratio are multiplied by the same non-zero number, the ratio remains unchanged.

If two terms of a ratio be multiplied by any number except zero, then there is no change in the value of the ratio because; m : n = \(\frac{m}{n}\) = \(\frac{km}{kn}\)= km : kn

If both the terms of a ratio are divided by the same non-zero number, the ratio remains unchanged.

m : n = \(\frac{m}{n}\) = \(\frac{\frac{m}{k}}{\frac{n}{k}}\) = \(\frac{m}{k}\) : \(\frac{n}{k}\), (k ≠ 0)

In other words, the ratio of m and n is the same as the ratio of the quantities km and kn, or \(\frac{m}{k}\) and \(\frac{n}{k}\), where k ≠ 0.


6. If two quantities are in the ratio m : n then the quantities will be of the form m ∙ k and n ∙ k, where k is nay number, k ≠ 0. Thus, if the ratio of two quantities x and y is 3 : 4, x and y can be 6 and 8 (k = 2), 9 and 12 (k = 3), and so on.

7. If m is k % of n then the ratio m : n = k : 100. Also, if m : n = p : q then m = \(\frac{p}{q}\) × 100% of n = \(\frac{p}{q}\) × n.

8. A ratio must always be expressed in its lowest terms.

The ratio is in its lowest terms, if the H.C.F. of its both the terms is 1 (unity).

For example;

(i) The ratio 3 : 7 is in its lowest terms as the H.C.F. of its terms 3 and 7 is 1.

(ii) The ratio 4 : 20 is not in its lowest terms as the H.C.F. of its terms 4 and 20 is 4 and not 1.


9. Ratios m : n and n : m cannot be equal unless m = n

i.e. m : n ≠ n : m, unless m = n

In other words, the order of the terms in a ratio is important.

● Ratio and proportion






10th Grade Math

From Important Properties of Ratios to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Fundamental Operations on Large Numbers Worksheet | 5th Grade Numbers

    Mar 14, 25 05:31 PM

    fundamental operations on large numbers worksheet

    Read More

  2. Word Problems on Division | Examples on Word Problems on Division

    Mar 13, 25 01:01 PM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  3. Division of Whole Numbers |Relation between Dividend, Divisor Quotient

    Mar 13, 25 12:41 PM

    Dividing Whole Numbers
    Relation between Dividend, Divisor, Quotient and Remainder is. Dividend = Divisor × Quotient + Remainder. To understand the relation between dividend, divisor, quotient and remainder let us follow the…

    Read More

  4. Adding 1-Digit Number | Understand the Concept one Digit Number |Video

    Mar 07, 25 03:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  5. Vertical Addition | How to Add 1-Digit Number Vertically? | Problems

    Mar 07, 25 02:35 PM

    Vertical Addition
    Now we will learn simple Vertical Addition of 1-digit number by arranging them one number under the other number. How to add 1-digit number vertically?

    Read More