# Important Properties of Ratios

Some of the important properties of ratios are discussed here.

1. Ratio $$\frac{m}{n}$$ has no unit and can be written as m : n (read as m is to n).

2. The quantities m and n are called terms of the ratio. The first quantity m is called the first term or the antecedent and the second quantity n is called the second term or the consequent of the ratio m : n.

The second term of a ratio cannot be zero.

i.e., (i) In the ratio m : n, the second term n cannot be zero (n ≠ 0).

(ii) In the ratio n : m, the second term cannot be zero (m ≠ 0).

3. The ratio of two unlike quantities is not defined. For example, the ratio between 5 kg and 15 meters cannot be found.

4. Ratio is a pure number and does not have any unit.

5. If both the terms of a ratio are multiplied by the same non-zero number, the ratio remains unchanged.

If two terms of a ratio be multiplied by any number except zero, then there is no change in the value of the ratio because; m : n = $$\frac{m}{n}$$ = $$\frac{km}{kn}$$= km : kn

If both the terms of a ratio are divided by the same non-zero number, the ratio remains unchanged.

m : n = $$\frac{m}{n}$$ = $$\frac{\frac{m}{k}}{\frac{n}{k}}$$ = $$\frac{m}{k}$$ : $$\frac{n}{k}$$, (k ≠ 0)

In other words, the ratio of m and n is the same as the ratio of the quantities km and kn, or $$\frac{m}{k}$$ and $$\frac{n}{k}$$, where k ≠ 0.

6. If two quantities are in the ratio m : n then the quantities will be of the form m ∙ k and n ∙ k, where k is nay number, k ≠ 0. Thus, if the ratio of two quantities x and y is 3 : 4, x and y can be 6 and 8 (k = 2), 9 and 12 (k = 3), and so on.

7. If m is k % of n then the ratio m : n = k : 100. Also, if m : n = p : q then m = $$\frac{p}{q}$$ × 100% of n = $$\frac{p}{q}$$ × n.

8. A ratio must always be expressed in its lowest terms.

The ratio is in its lowest terms, if the H.C.F. of its both the terms is 1 (unity).

For example;

(i) The ratio 3 : 7 is in its lowest terms as the H.C.F. of its terms 3 and 7 is 1.

(ii) The ratio 4 : 20 is not in its lowest terms as the H.C.F. of its terms 4 and 20 is 4 and not 1.

9. Ratios m : n and n : m cannot be equal unless m = n

i.e. m : n ≠ n : m, unless m = n

In other words, the order of the terms in a ratio is important.

● Ratio and proportion

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Method of H.C.F. |Highest Common Factor|Factorization &Division Method

Apr 13, 24 05:12 PM

We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

2. ### Factors | Understand the Factors of the Product | Concept of Factors

Apr 13, 24 03:29 PM

Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

3. ### Methods of Prime Factorization | Division Method | Factor Tree Method

Apr 13, 24 01:27 PM

In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

4. ### Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

Apr 13, 24 12:41 PM

To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…