Processing math: 100%

Important Properties of Ratios

Some of the important properties of ratios are discussed here.

1. Ratio mn has no unit and can be written as m : n (read as m is to n).

2. The quantities m and n are called terms of the ratio. The first quantity m is called the first term or the antecedent and the second quantity n is called the second term or the consequent of the ratio m : n.

The second term of a ratio cannot be zero.

i.e., (i) In the ratio m : n, the second term n cannot be zero (n ≠ 0).

(ii) In the ratio n : m, the second term cannot be zero (m ≠ 0).


3. The ratio of two unlike quantities is not defined. For example, the ratio between 5 kg and 15 meters cannot be found.

4. Ratio is a pure number and does not have any unit.

5. If both the terms of a ratio are multiplied by the same non-zero number, the ratio remains unchanged.

If two terms of a ratio be multiplied by any number except zero, then there is no change in the value of the ratio because; m : n = mn = kmkn= km : kn

If both the terms of a ratio are divided by the same non-zero number, the ratio remains unchanged.

m : n = mn = mknk = mk : nk, (k ≠ 0)

In other words, the ratio of m and n is the same as the ratio of the quantities km and kn, or mk and nk, where k ≠ 0.


6. If two quantities are in the ratio m : n then the quantities will be of the form m ∙ k and n ∙ k, where k is nay number, k ≠ 0. Thus, if the ratio of two quantities x and y is 3 : 4, x and y can be 6 and 8 (k = 2), 9 and 12 (k = 3), and so on.

7. If m is k % of n then the ratio m : n = k : 100. Also, if m : n = p : q then m = pq × 100% of n = pq × n.

8. A ratio must always be expressed in its lowest terms.

The ratio is in its lowest terms, if the H.C.F. of its both the terms is 1 (unity).

For example;

(i) The ratio 3 : 7 is in its lowest terms as the H.C.F. of its terms 3 and 7 is 1.

(ii) The ratio 4 : 20 is not in its lowest terms as the H.C.F. of its terms 4 and 20 is 4 and not 1.


9. Ratios m : n and n : m cannot be equal unless m = n

i.e. m : n ≠ n : m, unless m = n

In other words, the order of the terms in a ratio is important.

● Ratio and proportion






10th Grade Math

From Important Properties of Ratios to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area of a Square and Rectangle | Area of Squares & Rectan

    Jul 19, 25 05:00 AM

    Area and Perimeter of Square and Rectangle
    We will practice the questions given in the worksheet on area of a square and rectangle. We know the amount of surface that a plane figure covers is called its area. 1. Find the area of the square len…

    Read More

  2. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  3. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  4. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  5. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More