Definition of Continued Proportion


Definition of Continued Proportion:

Three quantities are said to be in continued proportion if the ratio of the first term and second term be equal to the ratio of the second term and third term.

Suppose, the three quantities x, y and z are said to be in continued proportion if x : y = y : z, i.e., \(\frac{x}{y}\) = \(\frac{y}{z}\).

Similarly, four quantities are said to be in continued proportion if the ratio of the first term and second term be equal to the ratio of the second term and third term be equal to the ratio of the third term and fourth term.

If w, x, y and z are four quantities such that w : x = x : y = y : z, i.e., \(\frac{w}{x}\) = \(\frac{x}{y}\) = \(\frac{y}{z}\), they are said to be in continued proportion.

For example,

(i) The numbers 4, 6 and 9 are in continued proportion because

\(\frac{4}{6}\) = \(\frac{6}{9}\)

or, 6\(^{2}\) = 4 × 9.


(ii) The numbers 2, 4 and 6 are not in continued proportion because

\(\frac{2}{4}\) ≠ \(\frac{4}{6}\) .


(iii) The numbers 2, 4, 8 and 16 are in continued proportion because

\(\frac{2}{4}\) = \(\frac{4}{8}\)  = \(\frac{8}{16}\).



Solved examples on continued proportion of three or four quantities:

1. If k, 8, 16 are in continued proportion then find k.

Solution:

k, 8 and 16 are in continued proportion.

⟹ k : 8 = 8 : 16

⟹ \(\frac{k}{8}\) = \(\frac{8}{16}\)  

⟹ k × 16 = 8\(^{2}\)

⟹ 16k = 64

⟹ k = \(\frac{64}{16}\)

⟹ k = 4

Therefore, the value of k = 4.


2. Quantities m, 2, 10 and n are in continued proportion then find the values of m and n.

Solution:

m, 2, 10 and n are in continued proportion.

 ⟹ m : 2 = 2 : 10 = 10 : n

⟹ \(\frac{m}{2}\) = \(\frac{2}{10}\) = \(\frac{10}{n}\)   

⟹ \(\frac{m}{2}\) = \(\frac{2}{10}\) and \(\frac{2}{10}\) = \(\frac{10}{n}\) 

⟹ m × 10 = 2\(^{2}\) and 2 × n = 10\(^{2}\)

⟹ 10m = 4 and 2n = 100

⟹ m = \(\frac{4}{10}\) and n = \(\frac{100}{2}\)

⟹ m = 0.4 and n = 50

Therefore, the value of m = 0.4 and n = 50

 

● Ratio and proportion












10th Grade Math

From Basic Concept of Continued Proportion to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  2. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  3. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  4. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  5. Worksheets on Comparison of Numbers | Find the Greatest Number

    May 19, 24 10:42 AM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More