Symmetric Difference using Venn Diagram

The symmetric difference using Venn diagram of two subsets A and B is a sub set of U, denoted by A △ B and is defined by

A B = (A – B) ∪ (B – A)

Let A and B are two sets. The symmetric difference of two sets A and B is the set (A – B) ∪ (B – A) and is denoted by A △ B.

Thus, A B = (A – B) ∪ (B – A) = {x : x A ∩ B}

or, A B = {x : [x ∈ A and x ∉ B] or [x ∈ B and x ∉ A]}

Symmetric Difference using Venn Diagram

The shaded part of the given Venn diagram represents  B.

A △ B is the set of all those elements which belongs either to A or to B but not to both.

A △ B is also expressed by (A ∪ B) - (B ∩ A).

It follows that A △ ∅ = A for all subset A,

             A △ A = ∅ for all subset A


Properties of symmetric difference:

(i) A △ B = B △ A;                                       [Commutative property]

(ii) A △ (B △ C) = (A △ B) △ C                       [Associative property]


Example to find the symmetric difference using Venn diagram:

1. If A = {1, 2, 3, 4, 5, 6, 7, 8} and B = {1, 3, 5, 6, 7, 8, 9}, then A – B = {2, 4}, B – A = {9} and A B = {2, 4, 9}.

Symmetric Difference Venn Diagram

Therefore, the shaded part of the Venn diagram represents A △ B = {2, 4, 9}.


2. If A = {1, 2, 4, 7, 9} and B = {2, 3, 7, 8, 9} then A △ B = {1, 3, 4, 8}

Symmetric Difference

Therefore, the shaded part of the Venn diagram represents A △ B = {1, 3, 4, 8}.


3. If P = {a, c, f, m, n} and Q = {b, c, m, n, j, k} then P △ Q = {a, b, f, j, k}

Symmetric Difference of Two Sets

Therefore, the shaded part of the Venn diagram represents P △ Q = {a, b, f, j, k}.

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets

Symmetric Difference using Venn Diagram


7th Grade Math Problems

8th Grade Math Practice

From Symmetric Difference using Venn Diagram to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 19, 24 04:39 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More

  2. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 04:01 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  3. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More