Venn Diagrams in Different Situations

To draw Venn diagrams in different situations are discussed below:

How to represent a set using Venn diagrams in different situations?

1. ξ is a universal set and A is a subset of the universal set.

Subset of the Universal Set

ξ = {1, 2, 3, 4} 

A = {2, 3} 



 Draw a rectangle which represents the universal set. 

 Draw a circle inside the rectangle which represents A. 

 Write the elements of A inside the circle. 

 Write the leftover elements in ξ that is outside the circle but inside the rectangle. 

 Shaded portion represents A’, i.e., A’ = {1, 4} 

2. ξ is a universal set. A and B are two disjoint sets but the subset of the universal set i.e., A ⊆ ξ, B ⊆ ξ and A ∩ B = ф

Two Disjoint Sets

For example;

ξ = {a, e, i, o, u}

A = {a, i}

B = {e, u}


Draw a rectangle which represents the universal set.

Draw two circles inside the rectangle which represents A and B.

The circles do not overlap.

Write the elements of A inside the circle A and the elements of B inside the circle B of ξ.

Write the leftover elements in ξ , i.e., outside both circles but inside the rectangle.

The figure represents A ∩ B = ф


3. ξ is a universal set. A and B are subsets of ξ. They are also overlapping sets.

Overlapping Sets

For example;

Let ξ = {1, 2, 3, 4, 5, 6, 7}

A = {2, 4, 6, 5} and B = {1, 2, 3, 5}

Then A ∩ B = {2, 5}


Draw a rectangle which represents a universal set.

Draw two circles inside the rectangle which represents A and B.

The circles overlap.

Write the elements of A and B in the respective circles such that common elements are written in overlapping portion (2, 5).

Write rest of the elements in the rectangle but outside the two circles.

The figure represents A ∩ B = {2, 5}




4. ξ is a universal set and A and B are two sets such that A is a subset of B and B is a subset of ξ.

A is a Subset of B

For example;

Let ξ = {1, 3, 5, 7, 9}

A= {3, 5} and B= {1, 3, 5}

Then A ⊆ B and B ⊆ ξ


Draw a rectangle which represents the universal set.

Draw two circles such that circle A is inside circle B as A ⊆ B.

Write the elements of A in the innermost circle.

Write the remaining elements of B outside the circle A but inside the circle B.

The leftover elements of are written inside the rectangle but outside the two circles.


Observe the Venn diagrams. The shaded portion represents the following sets.

(a) A’ (A dash)

A dash Set








(b) A ∪ B (A union B)

A union B








(c) A ∩ B (A intersection B)

A intersection B








(d) (A ∪ B)’ (A union B dash)

A union B dash








(e) (A ∩ B)’ (A intersection B dash)

A intersection B dash








(f) B’ (B dash)

B dash








(g) A - B (A minus B)

A minus B








(h) (A - B)’ (Dash of sets A minus B)

Dash of sets A minus B








(i) (A ⊂ B)’ (Dash of A subset B)

Dash of A subset B







For example;

Use Venn diagrams in different situations to find the following sets.

Venn Diagrams in Different Situations

(a) A ∪ B

(b) A ∩ B

(c) A'

(d) B - A

(e) (A ∩ B)'

(f) (A ∪ B)'

Solution:

ξ = {a, b, c, d, e, f, g, h, i, j}

A = {a, b, c, d, f}

B = {d, f, e, g}

A ∪ B = {elements which are in A or in B or in both}

         = {a, b, c, d, e, f, g}

A ∩ B = {elements which are common to both A and B}

        = {d, f}

A' = {elements of ξ, which are not in A}

    = {e, g, h, i, j}

B - A = {elements which are in B but not in A}

        = {e, g}

(A ∩ B)' = {elements of ξ which are not in A ∩ B}

            = {a, b, c, e, g, h, i, j}

(A ∪ B)' = {elements of ξ which are not in A ∪ B}

             = {h, i, j}

Set Theory

Sets Theory

Representation of a Set

Types of Sets

Finite Sets and Infinite Sets

Power Set

Problems on Union of Sets

Problems on Intersection of Sets

Difference of two Sets

Complement of a Set

Problems on Complement of a Set

Problems on Operation on Sets

Word Problems on Sets

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Union of Sets using Venn Diagram

Intersection of Sets using Venn Diagram

Disjoint of Sets using Venn Diagram

Difference of Sets using Venn Diagram

Examples on Venn Diagram









8th Grade Math Practice

From Venn Diagrams in Different Situations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation |Definition,Examples,Problems | Video

    May 04, 25 03:47 PM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

    May 03, 25 04:38 PM

    Multiplication of Decimal Numbers
    The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total…

    Read More

  3. Magic Square | Add upto 15 | Add upto 27 | Fibonacci Sequence | Videos

    May 03, 25 10:50 AM

    check the magic square
    In a magic square, every row, column and each of the diagonals add up to the same total. Here is a magic square. The numbers 1 to 9 are placed in the small squares in such a way that no number is repe

    Read More

  4. Division by 10 and 100 and 1000 |Division Process|Facts about Division

    May 03, 25 10:41 AM

    Divide 868 by 10
    Division by 10 and 100 and 1000 are explained here step by step. when we divide a number by 10, the digit at ones place of the given number becomes the remainder and the digits at the remaining places…

    Read More

  5. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More