Power Set

Definition of power set:

We have defined a set as a collection of its elements so, if S is a set then the collection or family of all subsets of S is called the power set of S and it is denoted by P(S).

Thus, if S = a, b then the power set of S is given by P(S) = {{a}, {b}, {a, b}, ∅}


We have defined a set as a collection of its elements if the element be sets themselves, then we have a family of set or set of sets.

Thus, A = {{1}, {1, 2, 3}, {2}, {1, 2}} is a family of sets.

The null set or empty set having no element of its own is an element of the power set; since, it is a subset of all sets. The set being a subset of itself is also as an element of the power set.


For example:

1. The collection of all subsets of a non-empty set S is a set of sets. Thus, the power set of a given set is always non-empty. This set is said to be the power set of S and is denoted by P(S). If S contains N elements, then P(S) contains 2^n subsets, because a subset of P(S) is either ∅ or a subset containing r elements of S, r = 1, 2, 3, ……..

Let S = {1, 2, 3} then the power set of S is given by P(S) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, ∅, S}.


2. If S = (a), then P(S) = {(a), ∅}; if again S = ∅, then P(S) = {∅}. It should be notated that ∅ ≠ {∅}. If S = {1, 2, 3} then the subset of S {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, ∅.

Hence, P(S) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, ∅}.


3. We know, since a set formed of all the subset of a set M as its elements is called a power set of M and is symbolically denoted by P(M). So, if M is a void set ∅, then P(M) has just one element ∅ then the power set of M is given by P(M) = {∅}




Set Theory

Sets Theory

Representation of a Set

Types of Sets

Finite Sets and Infinite Sets

Power Set

Problems on Union of Sets

Problems on Intersection of Sets

Difference of two Sets

Complement of a Set

Problems on Complement of a Set

Problems on Operation on Sets

Word Problems on Sets

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Union of Sets using Venn Diagram

Intersection of Sets using Venn Diagram

Disjoint of Sets using Venn Diagram

Difference of Sets using Venn Diagram

Examples on Venn Diagram








8th Grade Math Practice

From Power Set to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More