Intersection of Sets using Venn Diagram

Learn how to represent the intersection of sets using Venn diagram. The intersection set operations can be visualized from the diagrammatic representation of sets.

The rectangular region represents the universal set U and the circular regions the subsets A and B. The shaded portion represents the set name below the diagram.

Let A and B be the two sets. The intersection of A and B is the set of all those elements which belong to both A and B.

Now we will use the notation A ∩ B (which is read as ‘A intersection B’) to denote the intersection of set A and set B.

Thus, A ∩ B = {x : x ∈ A and x ∈ B}.

Clearly, x ∈ A ∩ B   

⇒ x ∈ A and x ∈ B

Therefore, the shaded portion in the adjoining figure represents  B.

Intersection of Sets using Venn Diagram

Thus, we conclude from the definition of intersection of sets that A ∩ B ⊆ A, A ∩ B ⊆ B.

From the above Venn diagram the following theorems are obvious:

(i) A ∩ A = A                        (Idempotent theorem) 

(ii) A ∩ U = A                       (Theorem of union) 

(iii) If A ⊆ B, then A ∩ B = A.

(iv) A ∩ B = B ∩ A                 (Commutative theorem) 

(v) A ∩ ϕ = ϕ                       (Theorem of ϕ) 

(vi) A ∩ A’ = ϕ                      (Theorem of ϕ) 

The symbols ⋃ and ∩ are often read as ‘cup’ and ‘cap’ respectively.

For two disjoint sets A and B, A ∩ B = ϕ.

Solved examples of intersection of sets using Venn diagram:

1. If A = {1, 2, 3, 4, 5} and B = {1, 3, 9, 12}. Find A ∩ B using venn diagram.


According to the given question we know, A = {1, 2, 3, 4, 5} and B = {1, 3, 9, 12}

Now let’s draw the venn diagram to find A intersection B.

Examples of Intersection of Sets

Therefore, from the venn diagram we get A B = {1, 3}

2. From the adjoining figure find A intersection B.

Intersection using Venn Diagram


According to the adjoining figure we get;

Set A = {m, p, q, r, s, t, u, v}

Set B = {m, n, o, p, q, i, j, k, g}

Therefore, A intersection B is the set of elements which belong to both set A and set B.

Thus, A ∩ B = {p, q, m}

Set Theory

Sets Theory

Representation of a Set

Types of Sets

Finite Sets and Infinite Sets

Power Set

Problems on Union of Sets

Problems on Intersection of Sets

Difference of two Sets

Complement of a Set

Problems on Complement of a Set

Problems on Operation on Sets

Word Problems on Sets

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Union of Sets using Venn Diagram

Intersection of Sets using Venn Diagram

Disjoint of Sets using Venn Diagram

Difference of Sets using Venn Diagram

Examples on Venn Diagram

8th Grade Math Practice

From Intersection of Sets using Venn Diagram to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More