# Relationship in Sets using Venn Diagram

The relationship in sets using Venn diagram are discussed below:

The union of two sets can be represented by Venn diagrams by the shaded region, representing A ∪ B.

A ∪ B when A ⊂ B

A ∪ B when neither A ⊂ B nor B ⊂ A

A ∪ B when A and B are disjoint sets

The intersection of two sets can be represented by Venn diagram, with the shaded region representing A ∩ B.

A ∩ B when A ⊂ B, i.e., A ∩ B = A

A ∩ B when neither A ⊂ B nor B ⊂ A

A ∩ B = ϕ No shaded part

The difference of two sets can be represented by Venn diagrams, with the shaded region representing A - B.

A – B when B ⊂ A

A – B when neither A ⊂ B nor B ⊂ A

A – B when A and B are disjoint sets.

Here A – B = A

A – B when A ⊂ B

Here A – B = ϕ

Relationship between the three Sets using Venn Diagram

If ξ represents the universal set and A, B, C are the three subsets of the universal sets. Here, all the three sets are overlapping sets.

Let us learn to represent various operations on these sets.

A ∪ B ∪ C

A ∩ B ∩ C

A ∪ (B ∩ C)

A ∩ (B ∪ C)

Some important results on number of elements in sets and their use in practical problems.

Now, we shall learn the utility of set theory in practical problems.

If A is a finite set, then the number of elements in A is denoted by n(A).

Relationship in Sets using Venn Diagram
Let A and B be two finite sets, then two cases arise:

Case 1:

A and B are disjoint.

Here, we observe that there is no common element in A and B.

Therefore, n(A ∪ B) = n(A) + n(B)

Case 2:

When A and B are not disjoint, we have from the figure

(i) n(A ∪ B) = n(A) + n(B) - n(A ∩ B)

(ii) n(A ∪ B) = n(A - B) + n(B - A) + n(A ∩ B)

(iii) n(A) = n(A - B) + n(A ∩ B)

(iv) n(B) = n(B - A) + n(A ∩ B)

A – B

B – A

A ∩ B

Let A, B, C be any three finite sets, then

n(A ∪ B ∪ C) = n[(A ∪ B) ∪ C]

= n(A ∪ B) + n(C) - n[(A ∪ B) ∩ C]

= [n(A) + n(B) - n(A ∩ B)] + n(C) - n [(A ∩ C) ∪ (B ∩ C)]

= n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)

[Since, (A ∩ C) ∩ (B ∩ C) = A ∩ B ∩ C]

Therefore, n(A ∪B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)

Set Theory

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

 Share this page: What’s this?

## Recent Articles

1. ### Relation between Diameter Radius and Circumference |Problems |Examples

Apr 22, 24 05:19 PM

Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

Read More

2. ### Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

Apr 22, 24 01:35 PM

In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

Read More

3. ### Preschool Math Activities | Colorful Preschool Worksheets | Lesson

Apr 21, 24 10:57 AM

Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

Read More

4. ### Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

Apr 20, 24 05:39 PM

There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

Read More

5. ### What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

Apr 20, 24 05:29 PM

In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

Read More