# Relationship in Sets using Venn Diagram

The relationship in sets using Venn diagram are discussed below:

The union of two sets can be represented by Venn diagrams by the shaded region, representing A ∪ B.

A ∪ B when A ⊂ B

A ∪ B when neither A ⊂ B nor B ⊂ A

A ∪ B when A and B are disjoint sets

The intersection of two sets can be represented by Venn diagram, with the shaded region representing A ∩ B.

A ∩ B when A ⊂ B, i.e., A ∩ B = A

A ∩ B when neither A ⊂ B nor B ⊂ A

A ∩ B = ϕ No shaded part

The difference of two sets can be represented by Venn diagrams, with the shaded region representing A - B.

A – B when B ⊂ A

A – B when neither A ⊂ B nor B ⊂ A

A – B when A and B are disjoint sets.

Here A – B = A

A – B when A ⊂ B

Here A – B = ϕ

Relationship between the three Sets using Venn Diagram

If ξ represents the universal set and A, B, C are the three subsets of the universal sets. Here, all the three sets are overlapping sets.

Let us learn to represent various operations on these sets.

A ∪ B ∪ C

A ∩ B ∩ C

A ∪ (B ∩ C)

A ∩ (B ∪ C)

Some important results on number of elements in sets and their use in practical problems.

Now, we shall learn the utility of set theory in practical problems.

If A is a finite set, then the number of elements in A is denoted by n(A).

Relationship in Sets using Venn Diagram
Let A and B be two finite sets, then two cases arise:

Case 1:

A and B are disjoint.

Here, we observe that there is no common element in A and B.

Therefore, n(A ∪ B) = n(A) + n(B)

Case 2:

When A and B are not disjoint, we have from the figure

(i) n(A ∪ B) = n(A) + n(B) - n(A ∩ B)

(ii) n(A ∪ B) = n(A - B) + n(B - A) + n(A ∩ B)

(iii) n(A) = n(A - B) + n(A ∩ B)

(iv) n(B) = n(B - A) + n(A ∩ B)

A – B

B – A

A ∩ B

Let A, B, C be any three finite sets, then

n(A ∪ B ∪ C) = n[(A ∪ B) ∪ C]

= n(A ∪ B) + n(C) - n[(A ∪ B) ∩ C]

= [n(A) + n(B) - n(A ∩ B)] + n(C) - n [(A ∩ C) ∪ (B ∩ C)]

= n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)

[Since, (A ∩ C) ∩ (B ∩ C) = A ∩ B ∩ C]

Therefore, n(A ∪B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C)

Set Theory

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Addition of Three 1-Digit Numbers | Add 3 Single Digit Numbers | Steps

Sep 19, 24 01:15 AM

To add three numbers, we add any two numbers first. Then, we add the third number to the sum of the first two numbers. For example, let us add the numbers 3, 4 and 5. We can write the numbers horizont…

2. ### Adding 1-Digit Number | Understand the Concept one Digit Number

Sep 18, 24 03:29 PM

Understand the concept of adding 1-digit number with the help of objects as well as numbers.

3. ### Addition of Numbers using Number Line | Addition Rules on Number Line

Sep 18, 24 02:47 PM

Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

4. ### Counting Before, After and Between Numbers up to 10 | Number Counting

Sep 17, 24 01:47 AM

Counting before, after and between numbers up to 10 improves the child’s counting skills.