Practice Test on Operations on Sets

In practice test on operations on sets we will solve 8 different types of questions on more about sets. The questions will be mainly related to union of sets, intersection of sets and difference of sets.

Practice Test on Operations on Sets

1. If A = {2, 3, 4, 5}     B = {4, 5, 6, 7}     C = {6, 7, 8, 9}     D = {8, 9, 10, 11}, find

(a) A ∪ B

(b) A ∪ C

(c) B ∪ C

(d) B ∪ D

(e) (A ∪ B) ∪ C

(f) A ∪ (B ∪ C)

(g) B ∪ (C ∪ D)


2. If A = {4, 6, 8, 10, 12} B = {8, 10, 12, 14} C = {12, 14, 16} D = {16, 18}, find

(a) A ∩ B

(b) B ∩ C

(c) A ∩ (C ∩ D)

(d) A ∩ C

(e) B ∩ D

(f)(A ∩ B) ∪ C

(g) A ∩ (B ∪ D)

(h) (A ∩ B) ∪ (B ∩ C)

(i) (A ∪ D) ∩ (B ∪ C)


3. If A = {4, 7, 10, 13, 16, 19, 22}   B = {5, 9, 13, 17, 20}
C = {3, 5, 7, 9, 11, 13, 15, 17}   D = {6, 11, 16, 21} then find


(a) A - C

(b) D - A

(c) D - B

(d) A - D

(e) B - C

(f) C - D

(g) B - A

(h) B - D

(i) D - C

(j) A - B

(k) C - B

(l) C - A

More Practice Test on Operations on Sets
4. If A and B are two sets such that A ⊂ B, then what is A∪B?

5. Find the union, intersection and the difference (A - B) of the following pairs of sets.

(a) A = The set of all letters of the word FEAST

     B = The set of all letters of the word TASTE

(b) A = {x : x ∈ W, 0 < x ≤ 7}

     B = {x : x ∈ W, 4 < x < 9}

(c) A = {x | x ∈ N, x is a factor of 12}

     B = {x | x ∈ N, x is a multiple of 2, x < 12}

(d) A = The set of all even numbers less than 12

     B = The set of all odd numbers less than 11

(e) A = {x : x ∈ I, -2 < x < 2}

     B = {x : x ∈ I, -1 < x < 4}

(f) A = {a, l, m, n, p}

    B = {q, r, l, a, s, n}


6. Let X = {2, 4, 5, 6}   Y = {3, 4, 7, 8}   Z = {5, 6, 7, 8}, find

(a) (X - Y) ∪ (Y - X)

(b) (X - Y) ∩ (Y - X)

(c) (Y - Z) ∪ (Z - Y)

(d) (Y - Z) ∩ (Z - Y)

Practice Test on Operations on Sets

7. Let ξ = {1, 2, 3, 4, 5, 6, 7} and A = {1, 2, 3, 4, 5} B = {2, 5, 7} show that

(a) (A ∪ B)' = A' ∩ B'

(b) (A ∩ B)' = A' ∪ B'

(c) (A ∩ B) = B ∩ A

(d) (A ∪ B) = B ∪ A


8. Let P = {a, b, c, d}   Q = {b, d, f}   R = {a, c, e} verify that

(a) (P ∪ Q) ∪ R = P ∪ (Q ∪ R)

(b) (P ∩ Q) ∩ R = P ∩ (Q ∩ R)


Answers for practice test on operations on sets are given below to check the correct answers.


Answers:

1. (a) {2, 3, 4, 5, 6, 7}
(b) {2, 3, 4, 5, 6, 7, 8, 9}
(c) {4, 5, 6, 7, 8, 9}
(d) {4, 5, 6, 7, 8, 9, 10, 11}
(e) {2, 3, 4, 5, 6, 7, 8, 9}
(f) {2, 3, 4, 5, 6, 7, 8, 9}
(g) {4, 5, 6, 7, 8, 9, 10, 11}


2. (a) {8, 10, 12}
(b) {12, 14}
(c) ∅
(d) {12}
(e) d
(f) {8, 10, 12, 14, 16}
(g) {8}
(h) {8, 10, 12, 14}
(i) {8, 10, 12, 16}


3. (a) {4, 10, 16, 19, 22}
(b) {6, 11, 21}
(c) {6, 11, 16, 21}
(d) {4, 7, 10, 13, 19, 22}
(e) {20}
(f) {3, 5, 7, 9, 13, 15, 17}
(g) {5, 19, 17, 20}
(h) {5, 9, 13, 17, 20}
(i) {6, 16, 21}
(j) {4, 7, 10, 16, 19, 22}
(k) {3, 7, 11, 15}
(l) {3, 5, 9 11, 15, 17}


4. B

5. (a) {F, E, A, S, T}, {E, A, S, T}, {F}
(b) {1, 2, 3, 4, 5, 6, 7, 8}, {5, 6, 7}, {1, 2, 3, 4}
(c) {1, 2, 3, 4, 6, 8, 10, 12}, {2, 4, 6}, {1, 3, 12}
(d) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, d, {2, 4, 6, 8, 10}
(e) {-1, 0, 1, 2, 3}, {0, 1}, {-1}
(f) {a, 1, m, n, p, q, r, s}, {a, l, n}, {m, p}


6. (a) {2, 3, 5, 6, 7, 8}
(b) d
(c) d {3, 4, 5, 6}
(d) d


7. (a) L.H.S. = R. H. S = {6}
(b) L.H.S. = R. H. S = {1, 3, 4, 6, 7}
(c) {2, 5}
(d) {1, 2, 3, 4, 5, 7}


8. (a) {a, b, c, d, e, f}
(b) d

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets



7th Grade Math Problems

8th Grade Math Practice

From Practice Test on Operations on Sets to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Jul 12, 24 03:08 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Worksheet on Fractions | Questions on Fractions | Representation | Ans

    Jul 12, 24 02:11 PM

    Worksheet on Fractions
    In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

    Read More

  3. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Jul 12, 24 03:21 AM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  4. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    Jul 12, 24 12:59 AM

    To convert an improper fraction into a mixed number, divide the numerator of the given improper fraction by its denominator. The quotient will represent the whole number and the remainder so obtained…

    Read More

  5. Conversion of Mixed Fractions into Improper Fractions |Solved Examples

    Jul 12, 24 12:30 AM

    Conversion of Mixed Fractions into Improper Fractions
    To convert a mixed number into an improper fraction, we multiply the whole number by the denominator of the proper fraction and then to the product add the numerator of the fraction to get the numerat…

    Read More