Side Angle Side Congruence

Conditions for the SAS - Side Angle Side congruence

Two triangles are said to be congruent if two sides and the included angle of one are respectively equal to the two sides and the included angle of the other.

Experiment to prove Congruence with SAS:

∆LMN with LM – 8 cm, MN – 10 cm, ∠M – 60°

Also, draw another ∆XYZ with XY = 8cm, YZ = 10cm, ∠Y= 60°.

We see that LM = XY, AC = ∠M = ∠Y and MN = YZ

Side Angle Side Congruence

Make a trace copy of ∆XYZ and try to make it cover ∆LMN with X on L, Y on M and Z on N.

We observe that: two triangle cover each other exactly.

Therefore ∆LMN ≅  ∆XYZ


Worked-out problems on side angle side congruence triangles (SAS postulate):

SAS Postulate

1. In the kite shown, PQ = PS and ∠QPR = ∠SPR.

(i) Find the third pair of corresponding parts to make ∆ PQR ≅ ∆PSR by SAS congruence condition.

(ii) Is ∠QRP = ∠SRP?

Solution:

(i) In ∆ PQR and ∆ PSR

PQ = PS                        →        given

∠QPR = ∠SPR                 →         given

PR = PR                        →         common

Therefore, ∆PQR ≅ ∆PSR by SAS congruence condition

(ii) Yes, ∠QRP = ∠SRP (corresponding parts of  congruence triangle).


2. Identify the congruent triangle:

Identify the Congruent Triangle

Solution:

In ∆LMN,

65° + 45° + ∠L = 180°

       110° + ∠L = 180°

                 ∠L = 180° - 110°

Therefore,   ∠L = 70°

Now in ∆XYZ and ∆LMN

∠X = ∠L       (given in the picture)

XY = LM      (given in the picture)

XZ = NL      (given in the picture)

Therefore, ∆XYZ ≅ ∆LMN by SAS congruence axiom

 

3. By using SAS congruency proof that, angles opposite to equal side of an isosceles triangle are equal.

SAS Congruency

Solution:

Given: ∆PQR is isosceles and PQ = PR

Construction: Draw PO, the angle bisector of ∠P, PO meets QR at O.

Proof: In ∆QPO and ∆RPO

        PQ = PR             (given)

        PO = PO             (common)

       ∠QPO = ∠RPO       (by construction)

Therefore, ∆QPO ≅  ∆RPO      (by SAS congruence)

Therefore, ∠PQO = ∠PRO (by corresponding parts of congruent triangle)


4. Show that bisector of the vertical angle of an isosceles triangle bisects the base at right angle.

Congruence with SAS


Solution:

Given: ∆PQR is isosceles, and PO bisects ∠P

Proof: In ∆POQ and ∆POR

PQ = PR                         (isosceles triangle)

∠QPO = ∠RPO                  (PO bisects ∠P)

PO = PO                          (common)

Therefore, ∆ POQ ≅ ∆ POR  (by SAS congruence axiom)


Therefore, ∠POQ = ∠POR     (by corresponding parts of congruent triangle)


Diagonals of a Rectangle are Equal

5. Diagonals of a rectangle are equal.

Solution:

In the rectangle JKLM, JL and KM are the two diagonals.

It is required to prove that JL = KM.

Proof: In ∆JKL and ∆KLM,

JK = ML [Opposite of a parallelogram]

KL = KL  [Common side]

∠JKL = ∠KLM                           [Both are right angle]

Therefore, ∆JKL ≅ ∆KLM            [By Side Angle Side Congruence]

Therefore, JL = KM                   [Corresponding parts of congruence triangle]

Note: Diagonals of a square are equal to one another.

 

6. If two diagonals of a quadrilateral bisect each other, prove that the quadrilateral will be parallelogram.

Two Diagonals of a Quadrilateral

Solution:

Two diagonals PR and QS of quadrilateral PQRS bisect each at point O.

Therefore, PO = OR and QO = OS

It is required to prove that PQRS is a parallelogram.

Proof: In ∆POQ and ∆ROS

PO = OR              [Given]

QO = OS              [Given]

∠POQ = ∠ROS

Therefore, ∆POQ ≅ ∆ROS          [By Side Angle Side Congruence]

Therefore, ∠OPQ = ∠ORS          [Corresponding angle of congruence triangle]

Since, PR joins PQ and RS, and two alternate angles are equal

Therefore, PQ ∥ SR

Similarly, it can be proved that, ∆POS ≅ ∆QOR and PS ∥ QR

Therefore, in quadrilateral PQRS,

PQ ∥ SR and PS ∥ QR

Therefore, PQRS is a parallelogram.


7. If a pair of opposite sides of a quadrilateral are equal and parallel, prove that it will be parallelogram.

Opposite Sides of a Quadrilateral are Equal and Parallel

Solution:

In a quadrilateral PQRS,

PQ = SR and

PQ ∥ SR.

It is required to prove that PQRS is parallelogram.

Construction: Diagonal PR is drawn.

Proof: In ∆PQR and ∆RSP

PQ = SR                       [Given]

∠QPR = ∠PRS                [Since PQ ∥ SR and PR is transversal]

PR = PR                       [Common]

Therefore, ∆PQR ≅ ∆RSP            [By SAS congruence condition]

Therefore, ∠QRP = ∠SPR            [Corresponding parts of congruence triangle]

But PR joins QR and PS and two alternate angles are equal (∠QRP = ∠SPR).

Therefore, QR ∥ PS.

Therefore, in quadrilateral PQRS,

PQ ∥ SR                                [Given]

QR ∥ PS                                [Already proved]

Therefore, PQRS is a parallelogram.


Note: If a pair of line-segments are equal and parallel, so that line-segments formed by joining the end points, will be equal and parallel.


8. Two diagonals of a quadrilateral are unequal and bisect each other at right angle. Prove that the quadrilateral is a non square rhombus.

SAS Congruent Triangles

Solution:

Both the diagonals PR and QS of quadrilateral PQRS bisect each other at point O.

PO = OR; QO = OS; PR ≠ QS and PR ⊥ QS.

It is required to prove that PQRS is a rhombus.

Proof: The diagonals of a quadrilateral PQRS bisect each other.

Therefore, PQRS is a parallelogram.

Again, in ∆POS and ∆ROD,

PO = OR                        [By hypothesis]

OS = OS                        [Common side]

And ∠POs = ∠ROS            [Since PR ⊥ QS]

Therefore, ∆POS ≅ ∆ROD,  [By Side Angle Side Congruence]

Therefore, PS = RS                [Corresponding sides of congruent triangle]

Similarly we can prove that PS = SR = RQ = QP

Therefore, Quadrilateral PQRS is a parallelogram whose four sides are equal and diagonals are unequal.

Therefore, PQRS is a rhombus, which cannot be a square.

Congruent Shapes

Congruent Line-segments

Congruent Angles

Congruent Triangles

Conditions for the Congruence of Triangles

Side Side Side Congruence

Side Angle Side Congruence

Angle Side Angle Congruence

Angle Angle Side Congruence

Right Angle Hypotenuse Side congruence

Pythagorean Theorem

Proof of Pythagorean Theorem

Converse of Pythagorean Theorem






7th Grade Math Problems

8th Grade Math Practice

From Side Angle Side Congruence to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Skip Counting by 5's | Concept on Skip Counting |Skip Counting by Five

    Apr 07, 25 10:13 AM

    Skip Counting By 5
    The concept on skip counting by 5’s or fives is an essential skill to learn when making the jump from counting to basic addition.

    Read More

  2. Addition of 3-Digit Numbers with Regrouping | Step-by-Step Method

    Apr 07, 25 02:53 AM

    Addition of 3-Digit Numbers with Regrouping
    We will learn addition of 3-digit numbers with regrouping. Do you know the addition of 3-digit number? Yes I know how to add the numbers. Now, let us learn to add the 3-digit numbers with regrouping.

    Read More

  3. Worksheet on Fractions | Questions on Fractions | Representation | Ans

    Apr 07, 25 02:37 AM

    Worksheet on Fractions
    In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

    Read More

  4. Counting Numbers from 1 to 50 | Match the Number | Missing Numbers

    Apr 04, 25 03:46 PM

    Math Coloring Pages on Counting Number Oredr
    In counting numbers from 1 to 50, recognize the numbers, count and then join the numbers in the correct number order. Here we mainly need eye-hand coordination to draw the picture and maintain the num

    Read More

  5. Counting Eleven to Twenty with Numbers and Words |Numbers from 11 - 20

    Apr 04, 25 03:21 PM

    Counting eleven to twenty with numbers and words are explained below. One ten and one more is eleven. Eleven comes after ten. One ten and two more is twelve. Twelve comes after eleven.

    Read More

Word problems on Pythagorean Theorem