Word problems on Pythagorean Theorem


Learn how to solve different types of word problems on Pythagorean Theorem.

Pythagoras Theorem can be used to solve the problems step-by-step when we know the length of two sides of a right angled triangle and we need to get the length of the third side.

Three cases of word problems on Pythagorean Theorem:

Case 1: To find the hypotenuse where perpendicular and base are given.

Case 2: To find the base where perpendicular and hypotenuse are given.

Case 3: To find the perpendicular where base and hypotenuse are given.


Word problems using the Pythagorean Theorem:

1. A person has to walk 100 m to go from position X in the north of east direction to the position B and then to the west of Y to reach finally at position Z. The position Z is situated at the north of X and at a distance of 60 m from X. Find the distance between X and Y.

Solution:

Let XY = x m

Therefore, YZ = (100 – x) m

In ∆ XYZ, ∠Z = 90°


Therefore, by Pythagoras theorem

XY2 = YZ2 + XZ2

⇒ x2 = (100 – x)2 + 602

x2 = 10000 – 200x + x2 + 3600
North South East West
Pythagorean Theorem Word Problem

200x = 10000 + 3600

200x = 13600

x = 13600/200

x = 68


Therefore, distance between X and Y = 68 meters.


2. If the square of the hypotenuse of an isosceles right triangle is 128 cm2, find the length of each side.

Solution:

Let the two equal side of right angled isosceles triangle, right angled at Q be k cm.

Word problems on Pythagorean Theorem
Given: h2 = 128

So, we get

PR2 = PQ2 + QR2

h2 = k2 + k2

⇒ 128 = 2k2

⇒ 128/2 = k2

⇒ 64 = k2

√64 = k

8 = k

Therefore, length of each side is 8 cm.


Using the formula solve more word problems on Pythagorean Theorem.

3. Find the perimeter of a rectangle whose length is 150 m and the diagonal is 170 m.

Word problem on Pythagorean Theorem

Solution:

In a rectangle, each angle measures 90°.

Therefore PSR is right angled at S

Using Pythagoras theorem, we get

⇒ PS2 + SR2 = PR2

⇒ PS2 + 1502 = 1702

⇒ PS2 = 1702 – 1502

⇒ PS2= (170 + 150) (170 – 150), [using the formula of a2 - b2 = (a + b) (a - b)]

⇒ PS2= 320 × 20

⇒ PS2 = 6400

PS = √6400

PS = 80

Therefore perimeter of the rectangle PQRS = 2 (length + width)

                                                          = 2 (150 + 80) m

                                                          = 2 (230) m

                                                          = 460 m


4. A ladder 13 m long is placed on the ground in such a way that it touches the top of a vertical wall 12 m high. Find the distance of the foot of the ladder from the bottom of the wall.

Word problems using the Pythagorean Theorem

Solution:

Let the required distance be x meters. Here, the ladder, the wall and the ground from a right-angled triangle. The ladder is the hypotenuse of that triangle.

According to Pythagorean Theorem,

x2 + 122 = 132

⇒ x2 = 132 – 122

⇒ x2 = (13 + 12) (13 – 12)

⇒ x2 = (25) (1)

⇒ x2 = 25

x = √25

x = 5

Therefore, distance of the foot of the ladder from the bottom of the wall = 5 meters.


5. The height of two building is 34 m and 29 m respectively. If the distance between the two building is 12 m, find the distance between their tops.

Pythagorean Theorem: Word Problems

Solution:

The vertical buildings AB and CD are 34 m and 29 m respectively.

Draw DE ┴ AB

Then AE = AB – EB but EB = BC

Therefore AE = 34 m - 29 m = 5 m

Now, AED is right angled triangle and right angled at E.

Therefor,

AD2 = AE2 + ED2

⇒ AD2 = 52 + 122

⇒ AD2 = 25 + 144

⇒ AD2 = 169

AD = √169

AD = 13

Therefore the distance between their tops = 13 m.

The examples will help us to solve various types of word problems on Pythagorean Theorem.

Congruent Shapes

Congruent Line-segments

Congruent Angles

Congruent Triangles

Conditions for the Congruence of Triangles

Side Side Side Congruence

Side Angle Side Congruence

Angle Side Angle Congruence

Angle Angle Side Congruence

Right Angle Hypotenuse Side congruence

Pythagorean Theorem

Proof of Pythagorean Theorem

Converse of Pythagorean Theorem






7th Grade Math Problems

8th Grade Math Practice

From Word problems on Pythagorean Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More

Congruent Shapes

Congruent Line-segments

Congruent Angles

Congruent Triangles

Conditions for the Congruence of Triangles

Side Side Side Congruence

Side Angle Side Congruence

Angle Side Angle Congruence

Angle Angle Side Congruence

Right Angle Hypotenuse Side congruence

Pythagorean Theorem

Proof of Pythagorean Theorem

Converse of Pythagorean Theorem