Proof of Pythagorean Theorem

The proof of Pythagorean Theorem in mathematics is very important.

In a right angle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

States that in a right triangle that, the square of a (a2) plus the square of b (b2) is equal to the square of c (c2).

In short it is written as: a2 + b2 = c2

Proof of Pythagoras Theorem

Let QR = a, RP = b and PQ = c. Now, draw a square WXYZ of side (b + c).  Take points E, F, G, H on sides WX, XY, YZ and ZW respectively such that WE = XF = YG = ZH = b.

Verification of Pythagorean Theorem

Then, we will get 4 right-angled triangle, hypotenuse of each of them is ‘a’: remaining sides of each of them are band c. Remaining part of the figure is the

square EFGH, each of whose side is a, so area of the square EFGH is a2.

Now, we are sure that square WXYZ = square EFGH + 4 ∆ GYF

or, (b + c)2 = a2 + 4 ∙ 1/2 b ∙ c

or, b2 + c2 + 2bc = a2 + 2bc

or, b2 + c2 = a2

Proof of Pythagorean Theorem using Algebra:

Proof of Pythagorean Theorem
Given: A ∆ XYZ in which ∠XYZ = 90°.

To prove: XZ2 = XY2 + YZ2

Construction: Draw YO ⊥ XZ

Proof: In ∆XOY and ∆XYZ, we have,

∠X = ∠X                             → common

∠XOY = ∠XYZ                     →  each equal to 90°

Therefore, ∆ XOY ~ ∆ XYZ   → by AA-similarity

XO/XY = XY/XZ               

⇒ XO × XZ = XY2 ----------------- (i)

In ∆YOZ and ∆XYZ, we have,

∠Z = ∠Z                                     →            common

∠YOZ = ∠XYZ                             →            each equal to 90°

Therefore, ∆ YOZ ~ ∆ XYZ           →            by AA-similarity

⇒ OZ/YZ = YZ/XZ                 

⇒ OZ × XZ = YZ2 ----------------- (ii)

From (i) and (ii) we get,

XO × XZ + OZ × XZ = (XY2 + YZ2)

⇒ (XO + OZ) × XZ = (XY2 + YZ2)

⇒ XZ × XZ = (XY2 + YZ2)

⇒ XZ 2 = (XY2 + YZ2)

Congruent Shapes

Congruent Line-segments

Congruent Angles

Congruent Triangles

Conditions for the Congruence of Triangles

Side Side Side Congruence

Side Angle Side Congruence

Angle Side Angle Congruence

Angle Angle Side Congruence

Right Angle Hypotenuse Side congruence

Pythagorean Theorem

Proof of Pythagorean Theorem

Converse of Pythagorean Theorem

7th Grade Math Problems

8th Grade Math Practice

From Proof of Pythagorean Theorem to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 05:31 PM

    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

Word problems on Pythagorean Theorem