Subscribe to our YouTube channel for the latest videos, updates, and tips.


Problems on Ellipse

We will learn how to solve different types of problems on ellipse.

1. Find the equation of the ellipse whose eccentricity is \(\frac{4}{5}\) and axes are along the coordinate axes and with foci at (0, ± 4).

Solution:

Let the equitation of the ellipse is \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………… (i)

According to the problem, the coordinates of the foci are (0, ± 4).

Therefore, we see that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ±be).

Therefore, be = 4

b(\(\frac{4}{5}\)) = 4, [Putting the value of e = \(\frac{4}{5}\)]

⇒ b = 5

⇒ b\(^{2}\) = 25

Now, a\(^{2}\) = b\(^{2}\)(1 - e\(^{2}\))

⇒ a\(^{2}\) = 5\(^{2}\)(1 - (\(\frac{4}{5}\))\(^{2}\))

⇒ a\(^{2}\)  = 25(1 - \(\frac{16}{25}\))

⇒ a\(^{2}\) = 9

Now putting the value of a\(^{2}\) and b\(^{2}\) in (i) we get, \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

 

2. Determine the equation of the ellipse whose directrices along y = ± 9 and foci at (0, ± 4). Also find the length of its latus rectum. 

Solution:    

Let the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, ……………………………… (i)

The co-ordinate of the foci are (0, ± 4). This means that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ± be) and the equations of directrices are y = ± \(\frac{b}{e}\)

Therefore, \(\frac{b}{e}\) = 9 …………….. (ii)

and be = 4 …………….. (iii)

Now, from (ii) and (iii) we get,

b\(^{2}\) = 36

⇒ b = 6

Now, a\(^{2}\) = b\(^{2}\)(1 – e\(^{2}\))

⇒ a\(^{2}\) = b\(^{2}\) - b\(^{2}\)e\(^{2}\)

⇒ a\(^{2}\) = b\(^{2}\) - (be)\(^{2}\)

⇒ a\(^{2}\) = 6\(^{2}\) - 4\(^{2}\), [Putting the value of be = 4]

⇒ a\(^{2}\) = 36 - 16

⇒ a\(^{2}\) = 20

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{20}\) + \(\frac{y^{2}}{36}\) = 1.

The required length of latus rectum = 2 \(\frac{a^{2}}{b}\) = 2 \(\frac{20}{6}\) = \(\frac{20}{3}\) units.


3. Find the equation of the ellipse whose equation of its directrix is 3x + 4y - 5 = 0, co-ordinates of the focus are (1, 2) and the eccentricity is ½.

Solution:    

Let P (x, y) be any point on the required ellipse and PM be the perpendicular from P upon the directrix 3x + 4y - 5 = 0

Then by the definition,

\(\frac{SP}{PM}\) = e    

⇒  SP = e PM

⇒ \(\sqrt{(x - 1)^{2} + (y - 2)^{2}}\) = ½ |\(\frac{3x + 4y - 5}{\sqrt{3^{2}} + 4^{2}}\)|

⇒ (x - 1)\(^{2}\) + (y - 2)\(^{2}\) = ¼ \(\frac{(3x + 4y - 5)^{2}}{25}\), [Squaring both sides]

⇒ 100(x\(^{2}\) + y\(^{2}\) – 2x – 4y + 5) = 9x\(^{2}\) + 16y\(^{2}\) + 24xy - 30x - 40y + 25

⇒ 91x\(^{2}\) + 84y\(^{2}\) - 24xy - 170x - 360x + 475 = 0, which is the required equation of the ellipse.

● The Ellipse





11 and 12 Grade Math 

From Problems on Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More

  2. Multiplication Table of 6 | Read and Write the Table of 6 | Six Table

    May 12, 25 02:23 AM

    Multiplication Table of Six
    Repeated addition by 6’s means the multiplication table of 6. (i) When 6 bunches each having six bananas each. By repeated addition we can show 6 + 6 + 6 + 6 + 6 + 6 = 36 Then, six 6 times or 6 sixes

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 11, 25 01:22 PM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Dividing Decimals | Huge Number of Decimal Division Prob

    May 11, 25 11:52 AM

    Worksheet on Dividing Decimals
    Practice the math questions given in the worksheet on dividing decimals. Divide the decimals to find the quotient, same like dividing whole numbers. This worksheet would be really good for the student…

    Read More

  5. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 11, 25 11:18 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More