Problems on Ellipse

We will learn how to solve different types of problems on ellipse.

1. Find the equation of the ellipse whose eccentricity is \(\frac{4}{5}\) and axes are along the coordinate axes and with foci at (0, ± 4).

Solution:

Let the equitation of the ellipse is \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………… (i)

According to the problem, the coordinates of the foci are (0, ± 4).

Therefore, we see that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ±be).

Therefore, be = 4

b(\(\frac{4}{5}\)) = 4, [Putting the value of e = \(\frac{4}{5}\)]

⇒ b = 5

⇒ b\(^{2}\) = 25

Now, a\(^{2}\) = b\(^{2}\)(1 - e\(^{2}\))

⇒ a\(^{2}\) = 5\(^{2}\)(1 - (\(\frac{4}{5}\))\(^{2}\))

⇒ a\(^{2}\)  = 25(1 - \(\frac{16}{25}\))

⇒ a\(^{2}\) = 9

Now putting the value of a\(^{2}\) and b\(^{2}\) in (i) we get, \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

 

2. Determine the equation of the ellipse whose directrices along y = ± 9 and foci at (0, ± 4). Also find the length of its latus rectum. 

Solution:    

Let the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, ……………………………… (i)

The co-ordinate of the foci are (0, ± 4). This means that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ± be) and the equations of directrices are y = ± \(\frac{b}{e}\)

Therefore, \(\frac{b}{e}\) = 9 …………….. (ii)

and be = 4 …………….. (iii)

Now, from (ii) and (iii) we get,

b\(^{2}\) = 36

⇒ b = 6

Now, a\(^{2}\) = b\(^{2}\)(1 – e\(^{2}\))

⇒ a\(^{2}\) = b\(^{2}\) - b\(^{2}\)e\(^{2}\)

⇒ a\(^{2}\) = b\(^{2}\) - (be)\(^{2}\)

⇒ a\(^{2}\) = 6\(^{2}\) - 4\(^{2}\), [Putting the value of be = 4]

⇒ a\(^{2}\) = 36 - 16

⇒ a\(^{2}\) = 20

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{20}\) + \(\frac{y^{2}}{36}\) = 1.

The required length of latus rectum = 2 \(\frac{a^{2}}{b}\) = 2 \(\frac{20}{6}\) = \(\frac{20}{3}\) units.


3. Find the equation of the ellipse whose equation of its directrix is 3x + 4y - 5 = 0, co-ordinates of the focus are (1, 2) and the eccentricity is ½.

Solution:    

Let P (x, y) be any point on the required ellipse and PM be the perpendicular from P upon the directrix 3x + 4y - 5 = 0

Then by the definition,

\(\frac{SP}{PM}\) = e    

⇒  SP = e PM

⇒ \(\sqrt{(x - 1)^{2} + (y - 2)^{2}}\) = ½ |\(\frac{3x + 4y - 5}{\sqrt{3^{2}} + 4^{2}}\)|

⇒ (x - 1)\(^{2}\) + (y - 2)\(^{2}\) = ¼ \(\frac{(3x + 4y - 5)^{2}}{25}\), [Squaring both sides]

⇒ 100(x\(^{2}\) + y\(^{2}\) – 2x – 4y + 5) = 9x\(^{2}\) + 16y\(^{2}\) + 24xy - 30x - 40y + 25

⇒ 91x\(^{2}\) + 84y\(^{2}\) - 24xy - 170x - 360x + 475 = 0, which is the required equation of the ellipse.

● The Ellipse





11 and 12 Grade Math 

From Problems on Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More