Position of a Point with respect to the Ellipse

We will learn how to find the position of a point with respect to the ellipse.

The point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) – 1 > 0, = or < 0.

Let P (x\(_{1}\), y\(_{1}\)) be any point on the plane of the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ………………….. (i)

From the point P (x\(_{1}\), y\(_{1}\)) draw PM perpendicular to XX' (i.e., x-axis) and meet the ellipse at Q.

According to the above graph we see that the point Q and P have the same abscissa. Therefore, the co-ordinates of Q are (x\(_{1}\), y\(_{2}\)).

Since the point Q (x\(_{1}\), y\(_{2}\)) lies on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1.

Therefore,

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{2}^{2}}{b^{2}}\) = 1        

\(\frac{y_{2}^{2}}{b^{2}}\) = 1 - \(\frac{x_{1}^{2}}{a^{2}}\) ………………….. (i)

Now, point P lies outside, on or inside the ellipse according as

PM >, = or < QM

i.e., according as y\(_{1}\) >, = or < y\(_{2}\)

i.e., according as \(\frac{y_{1}^{2}}{b^{2}}\) >, = or < \(\frac{y_{2}^{2}}{b^{2}}\)

i.e., according as \(\frac{y_{1}^{2}}{b^{2}}\) >, = or < 1 - \(\frac{x_{1}^{2}}{a^{2}}\), [Using (i)]

i.e., according as \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) >, = or < 1

i.e., according as \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 >, = or < 0

Therefore, the point

(i) P (x\(_{1}\), y\(_{1}\)) lies outside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 if PM > QM

i.e., \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 > 0.

(ii) P (x\(_{1}\), y\(_{1}\)) lies on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 if PM = QM

i.e., \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 = 0.

(ii) P (x\(_{1}\), y\(_{1}\)) lies inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 if PM < QM

i.e., \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 < 0.

Hence, the point P(x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as x\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\)  - 1 >, = or < 0.

Note:

Suppose E\(_{1}\) = \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1, then the point P(x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as E\(_{1}\) >, = or < 0.

 

Solved examples to find the position of the point (x\(_{1}\), y\(_{1}\)) with respect to an ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1:

1. Determine the position of the point (2, - 3) with respect to the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.  

Solution:

We know that the point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) – 1 > , = or  < 0.

For the given problem we have,

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 = \(\frac{2^{2}}{9}\) + \(\frac{(-3)^{2}}{25}\) – 1 = \(\frac{4}{9}\) + \(\frac{9}{25}\) - 1 = - \(\frac{44}{225}\) < 0.

Therefore, the point (2, - 3) lies inside the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.


2. Determine the position of the point (3, - 4) with respect to the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{16}\) = 1.  

Solution:

We know that the point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 > , = or  < 0.

For the given problem we have,

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 = \(\frac{3^{2}}{9}\) + \(\frac{(-4)^{2}}{16}\) - 1 = \(\frac{9}{9}\) + \(\frac{16}{16}\) - 1 = 1 + 1 - 1 = 1 > 0.

Therefore, the point (3, - 4) lies outside the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{16}\) = 1.  

● The Ellipse






11 and 12 Grade Math 

From Position of a Point with respect to the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 15, 24 04:57 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 15, 24 04:08 PM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 15, 24 03:16 PM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  4. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  5. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More