Two Foci and Two Directrices of the Ellipse

We will learn how to find the two foci and two directrices of the ellipse.

Let P (x, y) be a point on the ellipse.

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1

⇒ b\(^{2}\)x\(^{2}\) + a\(^{2}\)y\(^{2}\) = a\(^{2}\)b\(^{2}\)

Now form the above diagram we get,

CA = CA' = a and e is the eccentricity of the ellipse and the point S and the line ZK are the focus and directrix respectively.

Now let S' and K' be two points on the x-axis on the side of C which is opposite to the side of S such that CS' = ae and CK' = \(\frac{a}{e}\).

Further let Z'K' perpendicular CK' and PM' perpendicular Z'K' as shown in the given figure. Now join P and S'. Therefore, we clearly see that PM’ = NK'.

Now from the equation b\(^{2}\)x\(^{2}\) + a\(^{2}\)y\(^{2}\) = a\(^{2}\)b\(^{2}\), we get,

⇒ a\(^{2}\)(1 - e\(^{2}\)) x\(^{2}\) + a\(^{2}\)y\(^{2}\) = a\(^{2}\) . a\(^{2}\)(1 - e\(^{2}\)), [Since, b\(^{2}\) = a\(^{2}\)(1 - e\(^{2}\))]

⇒ x\(^{2}\)(1 -  e\(^{2}\)) + y\(^{2}\) = a\(^{2}\)(1 - e\(^{2}\)) = a\(^{2}\) – a\(^{2}\)e\(^{2}\)

⇒ x\(^{2}\) + a\(^{2}\)e\(^{2}\) + y\(^{2}\) = a\(^{2}\) + x\(^{2}\)e\(^{2}\)

⇒ x\(^{2}\) + (ae)\(^{2}\) + 2 ∙ x ∙ ae + y\(^{2}\) = a\(^{2}\) + x 2e\(^{2}\) + 2a ∙ xe

⇒ (x + ae)\(^{2}\) + y\(^{2}\) = (a + xe)\(^{2}\)

⇒ (x + ae)\(^{2}\) + (y - 0)\(^{2}\) = e\(^{2}\)(x + \(\frac{a}{e}\))\(^{2}\)

⇒ S'P\(^{2}\) = e\(^{2}\) ∙ PM'\(^{2}\)

⇒ S'P = e ∙ PM'

Distance of P from S' = e (distance of P from Z'K')

Hence, we would have obtained the same curve had we started with S' as focus and Z'K' as directrix. This shows that the ellipse has a second focus S' (-ae, 0) and a second directrix x = -\(\frac{a}{e}\).

In other words, from the above relation we see that the distance of the moving point P (x, y) from the point S' (- ae, 0) bears a constant ratio e (< 1) to its distance from the line x + \(\frac{a}{e}\) = 0.

Therefore, we shall have the same ellipse if the point S' (- ae, 0) is taken as the fixed point i.e, focus and x + \(\frac{a}{e}\) = 0 is taken as the fixed line i.e., directrix.

Hence, an ellipse has two foci and two directrices.

● The Ellipse




11 and 12 Grade Math 

From Two Foci and Two Directrices of the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Word Problems on Dividing Money | Solving Money Division Word Problems

    Feb 13, 25 10:29 AM

    Word Problems on Dividing Money
    Read the questions given in the word problems on dividing money. We need to understand the statement and divide the amount of money as ordinary numbers with two digit numbers. 1. Ron buys 15 pens for…

    Read More

  2. Addition and Subtraction of Money | Examples | Worksheet With Answers

    Feb 13, 25 09:02 AM

    Add Money Method
    In Addition and Subtraction of Money we will learn how to add money and how to subtract money.

    Read More

  3. Worksheet on Division of Money | Word Problems on Division of Money

    Feb 13, 25 03:53 AM

    Division of Money Worksheet
    Practice the questions given in the worksheet on division of money. This sheet provides different types of questions on dividing the amount of money by a number; finding the quotient

    Read More

  4. Worksheet on Multiplication of Money | Word Problems | Answers

    Feb 13, 25 03:17 AM

    Worksheet on Multiplication of Money
    Practice the questions given in the worksheet on multiplication of money. This sheet provides different types of questions on multiplying the amount of money by a number; arrange in columns the amount…

    Read More

  5. Division of Money | Worked-out Examples | Divide the Amounts of Money

    Feb 13, 25 12:16 AM

    Divide Money
    In division of money we will learn how to divide the amounts of money by a number. We carryout division with money the same way as in decimal numbers. We put decimal point in the quotient after two pl…

    Read More