Two Foci and Two Directrices of the Ellipse

We will learn how to find the two foci and two directrices of the ellipse.

Let P (x, y) be a point on the ellipse.

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1

⇒ b\(^{2}\)x\(^{2}\) + a\(^{2}\)y\(^{2}\) = a\(^{2}\)b\(^{2}\)

Now form the above diagram we get,

CA = CA' = a and e is the eccentricity of the ellipse and the point S and the line ZK are the focus and directrix respectively.

Now let S' and K' be two points on the x-axis on the side of C which is opposite to the side of S such that CS' = ae and CK' = \(\frac{a}{e}\).

Further let Z'K' perpendicular CK' and PM' perpendicular Z'K' as shown in the given figure. Now join P and S'. Therefore, we clearly see that PM’ = NK'.

Now from the equation b\(^{2}\)x\(^{2}\) + a\(^{2}\)y\(^{2}\) = a\(^{2}\)b\(^{2}\), we get,

⇒ a\(^{2}\)(1 - e\(^{2}\)) x\(^{2}\) + a\(^{2}\)y\(^{2}\) = a\(^{2}\) . a\(^{2}\)(1 - e\(^{2}\)), [Since, b\(^{2}\) = a\(^{2}\)(1 - e\(^{2}\))]

⇒ x\(^{2}\)(1 -  e\(^{2}\)) + y\(^{2}\) = a\(^{2}\)(1 - e\(^{2}\)) = a\(^{2}\) – a\(^{2}\)e\(^{2}\)

⇒ x\(^{2}\) + a\(^{2}\)e\(^{2}\) + y\(^{2}\) = a\(^{2}\) + x\(^{2}\)e\(^{2}\)

⇒ x\(^{2}\) + (ae)\(^{2}\) + 2 ∙ x ∙ ae + y\(^{2}\) = a\(^{2}\) + x 2e\(^{2}\) + 2a ∙ xe

⇒ (x + ae)\(^{2}\) + y\(^{2}\) = (a + xe)\(^{2}\)

⇒ (x + ae)\(^{2}\) + (y - 0)\(^{2}\) = e\(^{2}\)(x + \(\frac{a}{e}\))\(^{2}\)

⇒ S'P\(^{2}\) = e\(^{2}\) ∙ PM'\(^{2}\)

⇒ S'P = e ∙ PM'

Distance of P from S' = e (distance of P from Z'K')

Hence, we would have obtained the same curve had we started with S' as focus and Z'K' as directrix. This shows that the ellipse has a second focus S' (-ae, 0) and a second directrix x = -\(\frac{a}{e}\).

In other words, from the above relation we see that the distance of the moving point P (x, y) from the point S' (- ae, 0) bears a constant ratio e (< 1) to its distance from the line x + \(\frac{a}{e}\) = 0.

Therefore, we shall have the same ellipse if the point S' (- ae, 0) is taken as the fixed point i.e, focus and x + \(\frac{a}{e}\) = 0 is taken as the fixed line i.e., directrix.

Hence, an ellipse has two foci and two directrices.

● The Ellipse




11 and 12 Grade Math 

From Two Foci and Two Directrices of the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More